File: utils.h

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (1062 lines) | stat: -rw-r--r-- 40,669 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
// Copyright (C) 2013-2025 Johan Hake, Jan Blechta, Garth N. Wells and Paul T.
// Kühner
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later

#pragma once

#include "Constant.h"
#include "CoordinateElement.h"
#include "DofMap.h"
#include "ElementDofLayout.h"
#include "Expression.h"
#include "Form.h"
#include "Function.h"
#include "FunctionSpace.h"
#include "kernel.h"
#include "sparsitybuild.h"
#include <algorithm>
#include <array>
#include <concepts>
#include <cstddef>
#include <dolfinx/common/defines.h>
#include <dolfinx/common/types.h>
#include <dolfinx/la/SparsityPattern.h>
#include <dolfinx/mesh/EntityMap.h>
#include <dolfinx/mesh/Topology.h>
#include <dolfinx/mesh/cell_types.h>
#include <dolfinx/mesh/utils.h>
#include <format>
#include <functional>
#include <memory>
#include <optional>
#include <ranges>
#include <set>
#include <span>
#include <stdexcept>
#include <string>
#include <tuple>
#include <type_traits>
#include <ufcx.h>
#include <utility>
#include <vector>

/// @file utils.h
/// @brief Functions supporting finite element method operations
namespace basix
{
template <std::floating_point T>
class FiniteElement;
}

namespace dolfinx::common
{
class IndexMap;
}

namespace dolfinx::fem
{
template <dolfinx::scalar T, std::floating_point U>
class Expression;

namespace impl
{
/// Helper function to get an array of of (cell, local_facet) pairs
/// corresponding to a given facet index.
/// @param[in] f Facet index
/// @param[in] cells List of cells incident to the facet
/// @param[in] c_to_f Cell to facet connectivity
/// @return Vector of (cell, local_facet) pairs
template <int num_cells>
std::array<std::int32_t, 2 * num_cells>
get_cell_facet_pairs(std::int32_t f, std::span<const std::int32_t> cells,
                     const graph::AdjacencyList<std::int32_t>& c_to_f)
{
  // Loop over cells sharing facet
  assert(cells.size() == num_cells);
  std::array<std::int32_t, 2 * num_cells> cell_local_facet_pairs;
  for (int c = 0; c < num_cells; ++c)
  {
    // Get local index of facet with respect to the cell
    std::int32_t cell = cells[c];
    auto cell_facets = c_to_f.links(cell);
    auto facet_it = std::find(cell_facets.begin(), cell_facets.end(), f);
    assert(facet_it != cell_facets.end());
    int local_f = std::distance(cell_facets.begin(), facet_it);
    cell_local_facet_pairs[2 * c] = cell;
    cell_local_facet_pairs[2 * c + 1] = local_f;
  }

  return cell_local_facet_pairs;
}

/// Helper function to get an array of of (cell, local_entity) pairs
/// corresponding to a given entity index.
/// @note If the entity is connected to multiple cells, the first one is picked.
/// @param[in] e entity index
/// @param[in] cells List of cells incident to the entity
/// @param[in] c_to_e Cell to entity connectivity
/// @return Vector of (cell, local_entity) pairs
template <int num_cells>
std::array<std::int32_t, 2 * num_cells>
get_cell_entity_pairs(std::int32_t e, std::span<const std::int32_t> cells,
                      const graph::AdjacencyList<std::int32_t>& c_to_e)
{
  static_assert(num_cells == 1); // Patch assembly not supported.

  assert(cells.size() > 0);

  // Use first cell for assembly over by default
  std::int32_t cell = cells[0];

  // Find local index of entity within cell
  auto cell_entities = c_to_e.links(cell);
  auto it = std::ranges::find(cell_entities, e);
  assert(it != cell_entities.end());
  std::int32_t local_index = std::distance(cell_entities.begin(), it);

  return {cell, local_index};
}

} // namespace impl

/// @brief Given an integral type and a set of entities, computes and
/// return data for the entities that should be integrated over.
///
/// This function returns a list data, for each entity in  `entities`,
/// that is used in assembly. For cell integrals it is simply the cell
/// cell indices. For exterior facet integrals, a list of `(cell_index,
/// local_facet_index)` pairs is returned. For interior facet integrals,
/// a list of `(cell_index0, local_facet_index0, cell_index1,
/// local_facet_index1)` tuples is returned.
/// The data computed by this function is typically used as input to
/// fem::create_form.
///
/// @note Owned mesh entities only are returned. Ghost entities are not
/// included.
///
/// @pre For facet integrals, the topology facet-to-cell and
/// cell-to-facet connectivity must be computed before calling this
/// function.
///
/// @param[in] integral_type Integral type.
/// @param[in] topology Mesh topology.
/// @param[in] entities List of mesh entities. Depending on the `IntegralType`
/// these are associated with different entities:
///     `IntegralType::cell`:             cells
///     `IntegralType::exterior_facet`: facets
///     `IntegralType::interior_facet`:   facets
///     `IntegralType::vertex`:           vertices
/// @return List of integration entity data, depending on the `IntegralType` the
/// data per entity has different layouts
///     `IntegralType::cell`:             cell
///     `IntegralType::exterior_facet`:   (cell, local_facet)
///     `IntegralType::interior_facet`:   (cell, local_facet)
///     `IntegralType::vertex`:           (cell, local_vertex)
std::vector<std::int32_t>
compute_integration_domains(IntegralType integral_type,
                            const mesh::Topology& topology,
                            std::span<const std::int32_t> entities);

/// @brief Extract test (0) and trial (1) function spaces pairs for each
/// bilinear form for a rectangular array of forms.
///
/// @param[in] a A rectangular block on bilinear forms.
/// @return Rectangular array of the same shape as `a` with a pair of
/// function spaces in each array entry. If a form is null, then the
/// returned function space pair is (null, null).
template <dolfinx::scalar T, std::floating_point U>
std::vector<std::vector<std::array<std::shared_ptr<const FunctionSpace<U>>, 2>>>
extract_function_spaces(const std::vector<std::vector<const Form<T, U>*>>& a)
{
  std::vector<
      std::vector<std::array<std::shared_ptr<const FunctionSpace<U>>, 2>>>
      spaces(
          a.size(),
          std::vector<std::array<std::shared_ptr<const FunctionSpace<U>>, 2>>(
              a.front().size()));
  for (std::size_t i = 0; i < a.size(); ++i)
  {
    for (std::size_t j = 0; j < a[i].size(); ++j)
    {
      if (const Form<T, U>* form = a[i][j]; form)
        spaces[i][j] = {form->function_spaces()[0], form->function_spaces()[1]};
    }
  }
  return spaces;
}

/// @brief Create a sparsity pattern for a given form.
/// @note The pattern is not finalised, i.e. the caller is responsible
/// for calling SparsityPattern::assemble.
/// @param[in] a A bilinear form
/// @return The corresponding sparsity pattern
template <dolfinx::scalar T, std::floating_point U>
la::SparsityPattern create_sparsity_pattern(const Form<T, U>& a)
{
  std::shared_ptr mesh = a.mesh();
  assert(mesh);

  // Get index maps and block sizes from the DOF maps. Note that in
  // mixed-topology meshes, despite there being multiple DOF maps, the
  // index maps and block sizes are the same.
  std::array<std::reference_wrapper<const DofMap>, 2> dofmaps{
      *a.function_spaces().at(0)->dofmaps(0),
      *a.function_spaces().at(1)->dofmaps(0)};

  const std::array index_maps{dofmaps[0].get().index_map,
                              dofmaps[1].get().index_map};
  const std::array bs
      = {dofmaps[0].get().index_map_bs(), dofmaps[1].get().index_map_bs()};

  la::SparsityPattern pattern(mesh->comm(), index_maps, bs);
  build_sparsity_pattern(pattern, a);
  return pattern;
}

/// @brief Build a sparsity pattern for a given form.
/// @note The pattern is not finalised, i.e. the caller is responsible
/// for calling SparsityPattern::assemble.
/// @param[in] pattern The sparsity pattern to add to
/// @param[in] a A bilinear form
template <dolfinx::scalar T, std::floating_point U>
void build_sparsity_pattern(la::SparsityPattern& pattern, const Form<T, U>& a)
{
  if (a.rank() != 2)
  {
    throw std::runtime_error(
        "Cannot create sparsity pattern. Form is not a bilinear.");
  }

  std::shared_ptr mesh = a.mesh();
  assert(mesh);
  std::shared_ptr mesh0 = a.function_spaces().at(0)->mesh();
  assert(mesh0);
  std::shared_ptr mesh1 = a.function_spaces().at(1)->mesh();
  assert(mesh1);

  const std::set<IntegralType> types = a.integral_types();
  if (types.find(IntegralType::interior_facet) != types.end()
      or types.find(IntegralType::exterior_facet) != types.end())
  {
    // FIXME: cleanup these calls? Some of the happen internally again.
    int tdim = mesh->topology()->dim();
    mesh->topology_mutable()->create_entities(tdim - 1);
    mesh->topology_mutable()->create_connectivity(tdim - 1, tdim);
  }

  common::Timer t0("Build sparsity");

  auto extract_cells = [](std::span<const std::int32_t> facets)
  {
    assert(facets.size() % 2 == 0);
    std::vector<std::int32_t> cells;
    cells.reserve(facets.size() / 2);
    for (std::size_t i = 0; i < facets.size(); i += 2)
      cells.push_back(facets[i]);
    return cells;
  };

  const int num_cell_types = mesh->topology()->cell_types().size();
  for (int cell_type_idx = 0; cell_type_idx < num_cell_types; ++cell_type_idx)
  {
    std::array<std::reference_wrapper<const DofMap>, 2> dofmaps{
        *a.function_spaces().at(0)->dofmaps(cell_type_idx),
        *a.function_spaces().at(1)->dofmaps(cell_type_idx)};

    // Create and build sparsity pattern
    for (auto type : types)
    {
      switch (type)
      {
      case IntegralType::cell:
        for (int i = 0; i < a.num_integrals(type, cell_type_idx); ++i)
        {
          sparsitybuild::cells(pattern,
                               {a.domain_arg(type, 0, i, cell_type_idx),
                                a.domain_arg(type, 1, i, cell_type_idx)},
                               {{dofmaps[0], dofmaps[1]}});
        }
        break;
      case IntegralType::interior_facet:
        for (int i = 0; i < a.num_integrals(type, cell_type_idx); ++i)
        {
          sparsitybuild::interior_facets(
              pattern,
              {extract_cells(a.domain_arg(type, 0, i, 0)),
               extract_cells(a.domain_arg(type, 1, i, 0))},
              {{dofmaps[0], dofmaps[1]}});
        }
        break;
      case IntegralType::exterior_facet:
      case IntegralType::ridge:
      case IntegralType::vertex:
        for (int i = 0; i < a.num_integrals(type, cell_type_idx); ++i)
        {
          sparsitybuild::cells(pattern,
                               {extract_cells(a.domain_arg(type, 0, i, 0)),
                                extract_cells(a.domain_arg(type, 1, i, 0))},
                               {{dofmaps[0], dofmaps[1]}});
        }
        break;
      default:
        throw std::runtime_error("Unsupported integral type");
      }
    }
  }

  t0.stop();
}

/// Create an ElementDofLayout from a FiniteElement
template <std::floating_point T>
ElementDofLayout create_element_dof_layout(const fem::FiniteElement<T>& element,
                                           const std::vector<int>& parent_map
                                           = {})
{
  // Create subdofmaps and compute offset
  std::vector<int> offsets(1, 0);
  std::vector<dolfinx::fem::ElementDofLayout> sub_doflayout;
  int bs = element.block_size();
  for (int i = 0; i < element.num_sub_elements(); ++i)
  {
    // The ith sub-element. For mixed elements this is subelements()[i]. For
    // blocked elements, the sub-element will always be the same, so we'll use
    // sub_elements()[0]
    std::shared_ptr<const fem::FiniteElement<T>> sub_e
        = element.sub_elements()[bs > 1 ? 0 : i];

    // In a mixed element DOFs are ordered element by element, so the offset to
    // the next sub-element is sub_e->space_dimension(). Blocked elements use
    // xxyyzz ordering, so the offset to the next sub-element is 1

    std::vector<int> parent_map_sub(sub_e->space_dimension(), offsets.back());
    for (std::size_t j = 0; j < parent_map_sub.size(); ++j)
      parent_map_sub[j] += bs * j;
    offsets.push_back(offsets.back() + (bs > 1 ? 1 : sub_e->space_dimension()));
    sub_doflayout.push_back(
        dolfinx::fem::create_element_dof_layout(*sub_e, parent_map_sub));
  }

  return ElementDofLayout(bs, element.entity_dofs(),
                          element.entity_closure_dofs(), parent_map,
                          sub_doflayout);
}

/// @brief Create a dof map on mesh
/// @param[in] comm MPI communicator
/// @param[in] layout Dof layout on an element
/// @param[in] topology Mesh topology
/// @param[in] permute_inv Function to un-permute dofs. `nullptr`
/// when transformation is not required.
/// @param[in] reorder_fn Graph reordering function called on the dofmap
/// @return A new dof map
DofMap
create_dofmap(MPI_Comm comm, const ElementDofLayout& layout,
              mesh::Topology& topology,
              const std::function<void(std::span<std::int32_t>, std::uint32_t)>&
                  permute_inv,
              const std::function<std::vector<int>(
                  const graph::AdjacencyList<std::int32_t>&)>& reorder_fn);

/// @brief Create a set of dofmaps on a given topology
/// @param[in] comm MPI communicator
/// @param[in] layouts Dof layout on each element type
/// @param[in] topology Mesh topology
/// @param[in] permute_inv Function to un-permute dofs. `nullptr`
/// when transformation is not required.
/// @param[in] reorder_fn Graph reordering function called on the dofmaps
/// @return The list of new dof maps
/// @note The number of layouts must match the number of cell types in the
/// topology
std::vector<DofMap> create_dofmaps(
    MPI_Comm comm, const std::vector<ElementDofLayout>& layouts,
    mesh::Topology& topology,
    const std::function<void(std::span<std::int32_t>, std::uint32_t)>&
        permute_inv,
    const std::function<std::vector<int>(
        const graph::AdjacencyList<std::int32_t>&)>& reorder_fn);

/// Get the name of each coefficient in a UFC form
/// @param[in] ufcx_form The UFC form
/// @return The name of each coefficient
std::vector<std::string> get_coefficient_names(const ufcx_form& ufcx_form);

/// @brief Get the name of each constant in a UFC form
/// @param[in] ufcx_form The UFC form
/// @return The name of each constant
std::vector<std::string> get_constant_names(const ufcx_form& ufcx_form);

/// @brief Create a Form from UFCx input with coefficients and constants
/// passed in the required order.
///
/// Use fem::create_form to create a fem::Form with coefficients and
/// constants associated with the name/string.
///
/// @param[in] ufcx_forms A list of UFCx forms, one for each cell type.
/// @param[in] spaces Vector of function spaces. The number of spaces is
/// equal to the rank of the form.
/// @param[in] coefficients Coefficient fields in the form.
/// @param[in] constants Spatial constants in the form.
/// @param[in] subdomains Subdomain markers. The data can be computed
/// using fem::compute_integration_domains.
/// @param[in] entity_maps The entity maps for the form. Empty for
/// single domain problems.
/// @param[in] mesh The mesh of the domain.
///
/// @pre Each value in `subdomains` must be sorted by domain id.
template <dolfinx::scalar T, std::floating_point U = scalar_value_t<T>>
Form<T, U> create_form_factory(
    const std::vector<std::reference_wrapper<const ufcx_form>>& ufcx_forms,
    const std::vector<std::shared_ptr<const FunctionSpace<U>>>& spaces,
    const std::vector<std::shared_ptr<const Function<T, U>>>& coefficients,
    const std::vector<std::shared_ptr<const Constant<T>>>& constants,
    const std::map<
        IntegralType,
        std::vector<std::pair<std::int32_t, std::span<const std::int32_t>>>>&
        subdomains,
    const std::vector<std::reference_wrapper<const mesh::EntityMap>>&
        entity_maps,
    std::shared_ptr<const mesh::Mesh<U>> mesh = nullptr)
{
  for (const ufcx_form& ufcx_form : ufcx_forms)
  {
    if (ufcx_form.rank != (int)spaces.size())
      throw std::runtime_error("Wrong number of argument spaces for Form.");
    if (ufcx_form.num_coefficients != (int)coefficients.size())
    {
      throw std::runtime_error("Mismatch between number of expected and "
                               "provided Form coefficients.");
    }

    // Check Constants for rank and size consistency
    if (ufcx_form.num_constants != (int)constants.size())
    {
      throw std::runtime_error(std::format(
          "Mismatch between number of expected and "
          "provided Form Constants. Expected {} constants, but got {}.",
          ufcx_form.num_constants, constants.size()));
    }
    for (std::size_t c = 0; c < constants.size(); ++c)
    {
      if (ufcx_form.constant_ranks[c] != (int)constants[c]->shape.size())
      {
        throw std::runtime_error(std::format(
            "Mismatch between expected and actual rank of "
            "Form Constant. Rank of Constant {} should be {}, but got rank {}.",
            c, ufcx_form.constant_ranks[c], constants[c]->shape.size()));
      }
      if (!std::equal(constants[c]->shape.begin(), constants[c]->shape.end(),
                      ufcx_form.constant_shapes[c]))
      {
        throw std::runtime_error(
            std::format("Mismatch between expected and actual shape of Form "
                        "Constant for Constant {}.",
                        c));
      }
    }
  }

  // Check argument function spaces
  for (std::size_t form_idx = 0; form_idx < ufcx_forms.size(); ++form_idx)
  {
    for (std::size_t i = 0; i < spaces.size(); ++i)
    {
      assert(spaces[i]->elements(form_idx));
      if (auto element_hash
          = ufcx_forms[form_idx].get().finite_element_hashes[i];
          element_hash != 0
          and element_hash
                  != spaces[i]->elements(form_idx)->basix_element().hash())
      {
        throw std::runtime_error(
            "Cannot create form. Elements are different to "
            "those used to compile the form.");
      }
    }
  }

  // Extract mesh from FunctionSpace, and check they are the same
  if (!mesh and !spaces.empty())
    mesh = spaces.front()->mesh();
  if (!mesh)
    throw std::runtime_error("No mesh could be associated with the Form.");

  auto topology = mesh->topology();
  assert(topology);
  const int tdim = topology->dim();

  // NOTE: This assumes all forms in mixed-topology meshes have the same
  // integral offsets. Since the UFL forms for each type of cell should be
  // the same, I think this assumption is OK.
  const int* integral_offsets = ufcx_forms[0].get().form_integral_offsets;
  std::array<int, 5> num_integrals_type;
  for (std::size_t i = 0; i < num_integrals_type.size(); ++i)
    num_integrals_type[i] = integral_offsets[i + 1] - integral_offsets[i];

  // Create vertices, if required
  if (num_integrals_type[vertex] > 0)
  {
    mesh->topology_mutable()->create_connectivity(0, tdim);
    mesh->topology_mutable()->create_connectivity(tdim, 0);
  }

  // Create facets, if required
  // NOTE: exterior_facet and interior_facet is declared in ufcx.h
  if (num_integrals_type[exterior_facet] > 0
      or num_integrals_type[interior_facet] > 0)
  {
    mesh->topology_mutable()->create_entities(tdim - 1);
    mesh->topology_mutable()->create_connectivity(tdim - 1, tdim);
    mesh->topology_mutable()->create_connectivity(tdim, tdim - 1);
  }

  // Create ridges, if required
  if (num_integrals_type[ridge] > 0)
  {
    mesh->topology_mutable()->create_entities(tdim - 2);
    mesh->topology_mutable()->create_connectivity(tdim - 2, tdim);
    mesh->topology_mutable()->create_connectivity(tdim, tdim - 2);
  }

  // Get list of integral IDs, and load tabulate tensor into memory for
  // each
  std::map<std::tuple<IntegralType, int, int>, integral_data<T, U>> integrals;

  auto check_geometry_hash
      = [&geo = mesh->geometry()](const ufcx_integral& integral,
                                  std::size_t cell_idx)
  {
    if (integral.coordinate_element_hash != geo.cmaps().at(cell_idx).hash())
    {
      throw std::runtime_error(
          "Generated integral geometry element does not match mesh geometry: "
          + std::to_string(integral.coordinate_element_hash) + ", "
          + std::to_string(geo.cmaps().at(cell_idx).hash()));
    }
  };

  // Attach cell kernels
  bool needs_facet_permutations = false;
  {
    std::vector<std::int32_t> default_cells;
    std::span<const int> ids(ufcx_forms[0].get().form_integral_ids
                                 + integral_offsets[cell],
                             num_integrals_type[cell]);
    auto sd = subdomains.find(IntegralType::cell);
    for (std::size_t form_idx = 0; form_idx < ufcx_forms.size(); ++form_idx)
    {
      const ufcx_form& ufcx_form = ufcx_forms[form_idx];
      for (int i = 0; i < num_integrals_type[cell]; ++i)
      {
        const int id = ids[i];
        ufcx_integral* integral
            = ufcx_form.form_integrals[integral_offsets[cell] + i];
        assert(integral);
        check_geometry_hash(*integral, form_idx);

        // Build list of active coefficients
        std::vector<int> active_coeffs;
        for (int j = 0; j < ufcx_form.num_coefficients; ++j)
        {
          if (integral->enabled_coefficients[j])
            active_coeffs.push_back(j);
        }

        impl::kernel_t<T, U> k = impl::extract_kernel<T>(integral);
        if (!k)
        {
          throw std::runtime_error(
              "UFCx kernel function is NULL. Check requested types.");
        }

        // Build list of entities to assemble over
        if (id == -1)
        {
          // Default kernel, operates on all (owned) cells
          assert(topology->index_maps(tdim).at(form_idx));
          default_cells.resize(
              topology->index_maps(tdim).at(form_idx)->size_local(), 0);
          std::iota(default_cells.begin(), default_cells.end(), 0);
          integrals.insert({{IntegralType::cell, i, form_idx},
                            {k, default_cells, active_coeffs}});
        }
        else if (sd != subdomains.end())
        {
          // NOTE: This requires that pairs are sorted
          auto it = std::ranges::lower_bound(sd->second, id, std::less<>{},
                                             [](auto& a) { return a.first; });
          if (it != sd->second.end() and it->first == id)
          {
            integrals.insert({{IntegralType::cell, i, form_idx},
                              {k,
                               std::vector<std::int32_t>(it->second.begin(),
                                                         it->second.end()),
                               active_coeffs}});
          }
        }

        if (integral->needs_facet_permutations)
          needs_facet_permutations = true;
      }
    }
  }

  // Attach interior facet kernels
  {
    std::vector<std::int32_t> default_facets_int;
    std::span<const int> ids(ufcx_forms[0].get().form_integral_ids
                                 + integral_offsets[interior_facet],
                             num_integrals_type[interior_facet]);
    auto sd = subdomains.find(IntegralType::interior_facet);
    for (std::size_t form_idx = 0; form_idx < ufcx_forms.size(); ++form_idx)
    {
      const ufcx_form& ufcx_form = ufcx_forms[form_idx];

      // Create indicator for interprocess facets
      std::vector<std::int8_t> interprocess_marker;
      if (num_integrals_type[interior_facet] > 0)
      {
        assert(topology->index_map(tdim - 1));
        const std::vector<std::int32_t>& interprocess_facets
            = topology->interprocess_facets();
        std::int32_t num_facets = topology->index_map(tdim - 1)->size_local()
                                  + topology->index_map(tdim - 1)->num_ghosts();
        interprocess_marker.resize(num_facets, 0);
        std::ranges::for_each(interprocess_facets,
                              [&interprocess_marker](auto f)
                              { interprocess_marker[f] = 1; });
      }

      for (int i = 0; i < num_integrals_type[interior_facet]; ++i)
      {
        const int id = ids[i];
        ufcx_integral* integral
            = ufcx_form.form_integrals[integral_offsets[interior_facet] + i];
        assert(integral);
        check_geometry_hash(*integral, form_idx);

        std::vector<int> active_coeffs;
        for (int j = 0; j < ufcx_form.num_coefficients; ++j)
        {
          if (integral->enabled_coefficients[j])
            active_coeffs.push_back(j);
        }

        impl::kernel_t<T, U> k = impl::extract_kernel<T>(integral);
        assert(k);

        // Build list of entities to assembler over
        auto f_to_c = topology->connectivity(tdim - 1, tdim);
        assert(f_to_c);
        auto c_to_f = topology->connectivity(tdim, tdim - 1);
        assert(c_to_f);
        if (id == -1)
        {
          // Default kernel, operates on all (owned) interior facets
          assert(topology->index_map(tdim - 1));
          std::int32_t num_facets = topology->index_map(tdim - 1)->size_local();
          default_facets_int.reserve(4 * num_facets);
          for (std::int32_t f = 0; f < num_facets; ++f)
          {
            if (f_to_c->num_links(f) == 2)
            {
              std::array<std::int32_t, 4> pairs
                  = impl::get_cell_facet_pairs<2>(f, f_to_c->links(f), *c_to_f);
              default_facets_int.insert(default_facets_int.end(), pairs.begin(),
                                        pairs.end());
            }
            else if (interprocess_marker[f])
            {
              throw std::runtime_error(
                  "Cannot compute interior facet integral over interprocess "
                  "facet. Please use ghost mode shared facet when creating the "
                  "mesh");
            }
          }
          integrals.insert({{IntegralType::interior_facet, i, form_idx},
                            {k, default_facets_int, active_coeffs}});
        }
        else if (sd != subdomains.end())
        {
          auto it = std::ranges::lower_bound(sd->second, id, std::less{},
                                             [](auto& a) { return a.first; });
          if (it != sd->second.end() and it->first == id)
          {
            integrals.insert({{IntegralType::interior_facet, i, form_idx},
                              {k,
                               std::vector<std::int32_t>(it->second.begin(),
                                                         it->second.end()),
                               active_coeffs}});
          }
        }

        if (integral->needs_facet_permutations)
          needs_facet_permutations = true;
      }
    }
  }

  // Attach exterior entity integrals
  {
    for (IntegralType itg_type : {IntegralType::exterior_facet,
                                  IntegralType::vertex, IntegralType::ridge})
    {
      std::size_t dim;
      switch (itg_type)
      {
      case IntegralType::exterior_facet:
      {
        dim = tdim - 1;
        break;
      }
      case IntegralType::ridge:
      {
        dim = tdim - 2;
        break;
      }
      case IntegralType::vertex:
      {
        dim = 0;
        break;
      }
      default:
        throw std::runtime_error("Unsupported integral type");
      }

      const std::function<std::vector<std::int32_t>(const mesh::Topology&,
                                                    IntegralType)>
          get_default_integration_entities
          = [dim](const mesh::Topology& topology, IntegralType itg_type)
      {
        if (itg_type == IntegralType::exterior_facet)
        {
          // Integrate over all owned exterior facets
          return mesh::exterior_facet_indices(topology);
        }
        else
        {
          // Integrate over all owned entities
          std::int32_t num_entities = topology.index_map(dim)->size_local();
          std::vector<std::int32_t> entities(num_entities);
          std::iota(entities.begin(), entities.end(), 0);
          return entities;
        }
      };

      std::vector<std::int32_t> default_entities_ext;

      std::span<const int> ids(ufcx_forms[0].get().form_integral_ids
                                   + integral_offsets[(std::int8_t)itg_type],
                               num_integrals_type[(std::int8_t)itg_type]);
      auto sd = subdomains.find(itg_type);
      for (std::size_t form_idx = 0; form_idx < ufcx_forms.size(); ++form_idx)
      {
        const ufcx_form& ufcx_form = ufcx_forms[form_idx];
        for (int i = 0; i < num_integrals_type[(std::int8_t)itg_type]; ++i)
        {
          const int id = ids[i];
          ufcx_integral* integral
              = ufcx_form.form_integrals[integral_offsets[(std::int8_t)itg_type]
                                         + i];
          assert(integral);
          check_geometry_hash(*integral, form_idx);

          std::vector<int> active_coeffs;
          for (int j = 0; j < ufcx_form.num_coefficients; ++j)
          {
            if (integral->enabled_coefficients[j])
              active_coeffs.push_back(j);
          }

          impl::kernel_t<T, U> k = impl::extract_kernel<T>(integral);

          // Build list of entities to assembler over
          auto e_to_c = topology->connectivity(dim, tdim);
          assert(e_to_c);
          auto c_to_e = topology->connectivity(tdim, dim);
          assert(c_to_e);
          if (id == -1)
          {
            std::vector default_entities
                = get_default_integration_entities(*topology, itg_type);
            // Default kernel
            default_entities_ext.reserve(2 * default_entities.size());
            for (std::int32_t e : default_entities)
            {
              // There will only be one pair for an exterior facet integral
              std::array<std::int32_t, 2> pair = impl::get_cell_entity_pairs<1>(
                  e, e_to_c->links(e), *c_to_e);
              default_entities_ext.insert(default_entities_ext.end(),
                                          pair.begin(), pair.end());
            }
            integrals.insert({{itg_type, i, form_idx},
                              {k, default_entities_ext, active_coeffs}});
          }
          else if (sd != subdomains.end())
          {
            // NOTE: This requires that pairs are sorted
            auto it = std::ranges::lower_bound(sd->second, id, std::less<>{},
                                               [](auto& a) { return a.first; });
            if (it != sd->second.end() and it->first == id)
            {
              integrals.insert({{itg_type, i, form_idx},
                                {k,
                                 std::vector<std::int32_t>(it->second.begin(),
                                                           it->second.end()),
                                 active_coeffs}});
            }
          }

          if (integral->needs_facet_permutations)
            needs_facet_permutations = true;
        }
      }
    }
  }

  return Form<T, U>(spaces, std::move(integrals), mesh, coefficients, constants,
                    needs_facet_permutations, entity_maps);
}

/// @brief Create a Form from UFC input with coefficients and constants
/// resolved by name.
/// @param[in] ufcx_form UFC form
/// @param[in] spaces Function spaces for the Form arguments.
/// @param[in] coefficients Coefficient fields in the form (by name).
/// @param[in] constants Spatial constants in the form (by name).
/// @param[in] subdomains Subdomain markers. The data can be computed
/// using fem::compute_integration_domains.
/// @pre Each value in `subdomains` must be sorted by domain id.
/// @param[in] entity_maps The entity maps for the form. Empty for
/// single domain problems.
/// @param[in] mesh Mesh of the domain. This is required if the form has
/// no arguments, e.g. a functional.
/// @return A Form
template <dolfinx::scalar T, std::floating_point U = scalar_value_t<T>>
Form<T, U> create_form(
    const ufcx_form& ufcx_form,
    const std::vector<std::shared_ptr<const FunctionSpace<U>>>& spaces,
    const std::map<std::string, std::shared_ptr<const Function<T, U>>>&
        coefficients,
    const std::map<std::string, std::shared_ptr<const Constant<T>>>& constants,
    const std::map<
        IntegralType,
        std::vector<std::pair<std::int32_t, std::span<const std::int32_t>>>>&
        subdomains,
    const std::vector<std::reference_wrapper<const mesh::EntityMap>>&
        entity_maps,
    std::shared_ptr<const mesh::Mesh<U>> mesh = nullptr)
{
  // Place coefficients in appropriate order
  std::vector<std::shared_ptr<const Function<T, U>>> coeff_map;
  for (const std::string& name : get_coefficient_names(ufcx_form))
  {
    if (auto it = coefficients.find(name); it != coefficients.end())
      coeff_map.push_back(it->second);
    else
    {
      throw std::runtime_error("Form coefficient \"" + name
                               + "\" not provided.");
    }
  }

  // Place constants in appropriate order
  std::vector<std::shared_ptr<const Constant<T>>> const_map;
  for (const std::string& name : get_constant_names(ufcx_form))
  {
    if (auto it = constants.find(name); it != constants.end())
      const_map.push_back(it->second);
    else
      throw std::runtime_error("Form constant \"" + name + "\" not provided.");
  }

  return create_form_factory({ufcx_form}, spaces, coeff_map, const_map,
                             subdomains, entity_maps, mesh);
}

/// @brief Create a Form using a factory function that returns a pointer
/// to a `ufcx_form`.
///
/// Coefficients and constants are resolved by name/string.
///
/// @param[in] fptr Pointer to a function returning a pointer to
/// ufcx_form.
/// @param[in] spaces Function spaces for the Form arguments.
/// @param[in] coefficients Coefficient fields in the form (by name),
/// @param[in] constants Spatial constants in the form (by name),
/// @param[in] subdomains Subdomain markers. The data can be computed
/// using fem::compute_integration_domains.
/// @pre Each value in `subdomains` must be sorted by domain id.
/// @param[in] entity_maps The entity maps for the form. Empty for
/// single domain problems.
/// @param[in] mesh Mesh of the domain. This is required if the form has
/// no arguments, e.g. a functional.
/// @return A Form
template <dolfinx::scalar T, std::floating_point U = scalar_value_t<T>>
Form<T, U> create_form(
    ufcx_form* (*fptr)(),
    const std::vector<std::shared_ptr<const FunctionSpace<U>>>& spaces,
    const std::map<std::string, std::shared_ptr<const Function<T, U>>>&
        coefficients,
    const std::map<std::string, std::shared_ptr<const Constant<T>>>& constants,
    const std::map<
        IntegralType,
        std::vector<std::pair<std::int32_t, std::span<const std::int32_t>>>>&
        subdomains,
    const std::vector<std::reference_wrapper<const mesh::EntityMap>>&
        entity_maps,
    std::shared_ptr<const mesh::Mesh<U>> mesh = nullptr)
{
  ufcx_form* form = fptr();
  Form<T, U> L = create_form<T, U>(*form, spaces, coefficients, constants,
                                   subdomains, entity_maps, mesh);
  std::free(form);
  return L;
}

/// @brief NEW Create a function space from a fem::FiniteElement.
template <std::floating_point T>
FunctionSpace<T> create_functionspace(
    std::shared_ptr<mesh::Mesh<T>> mesh,
    std::shared_ptr<const fem::FiniteElement<T>> e,
    std::function<std::vector<int>(const graph::AdjacencyList<std::int32_t>&)>
        reorder_fn
    = nullptr)
{
  // TODO: check cell type of e (need to add method to fem::FiniteElement)
  assert(e);
  assert(mesh);
  assert(mesh->topology());
  if (e->cell_type() != mesh->topology()->cell_type())
    throw std::runtime_error("Cell type of element and mesh must match.");

  // Create element dof layout
  fem::ElementDofLayout layout = fem::create_element_dof_layout(*e);

  // Create a dofmap
  std::function<void(std::span<std::int32_t>, std::uint32_t)> permute_inv
      = e->needs_dof_permutations() ? e->dof_permutation_fn(true, true)
                                    : nullptr;
  auto dofmap = std::make_shared<const DofMap>(create_dofmap(
      mesh->comm(), layout, *mesh->topology(), permute_inv, reorder_fn));

  return FunctionSpace(mesh, e, dofmap);
}

/// @brief Create Expression from UFC
template <dolfinx::scalar T, std::floating_point U = scalar_value_t<T>>
Expression<T, U> create_expression(
    const ufcx_expression& e,
    const std::vector<std::shared_ptr<const Function<T, U>>>& coefficients,
    const std::vector<std::shared_ptr<const Constant<T>>>& constants,
    std::shared_ptr<const FunctionSpace<U>> argument_space = nullptr)
{
  if (!coefficients.empty())
  {
    assert(coefficients.front());
    assert(coefficients.front()->function_space());
    std::shared_ptr<const mesh::Mesh<U>> mesh
        = coefficients.front()->function_space()->mesh();
    if (mesh->geometry().cmap().hash() != e.coordinate_element_hash)
    {
      throw std::runtime_error(
          "Expression and mesh geometric maps do not match.");
    }
  }

  if (e.rank > 0 and !argument_space)
  {
    throw std::runtime_error("Expression has Argument but no Argument "
                             "function space was provided.");
  }

  std::vector<U> X(e.points, e.points + e.num_points * e.entity_dimension);
  std::array<std::size_t, 2> Xshape
      = {static_cast<std::size_t>(e.num_points),
         static_cast<std::size_t>(e.entity_dimension)};
  std::vector<std::size_t> value_shape(e.value_shape,
                                       e.value_shape + e.num_components);
  std::function<void(T*, const T*, const T*, const scalar_value_t<T>*,
                     const int*, const std::uint8_t*, void*)>
      tabulate_tensor = nullptr;
  if constexpr (std::is_same_v<T, float>)
    tabulate_tensor = e.tabulate_tensor_float32;
#ifndef DOLFINX_NO_STDC_COMPLEX_KERNELS
  else if constexpr (std::is_same_v<T, std::complex<float>>)
  {
    tabulate_tensor = reinterpret_cast<void (*)(
        T*, const T*, const T*, const scalar_value_t<T>*, const int*,
        const unsigned char*, void*)>(e.tabulate_tensor_complex64);
  }
#endif // DOLFINX_NO_STDC_COMPLEX_KERNELS
  else if constexpr (std::is_same_v<T, double>)
    tabulate_tensor = e.tabulate_tensor_float64;
#ifndef DOLFINX_NO_STDC_COMPLEX_KERNELS
  else if constexpr (std::is_same_v<T, std::complex<double>>)
  {
    tabulate_tensor = reinterpret_cast<void (*)(
        T*, const T*, const T*, const scalar_value_t<T>*, const int*,
        const unsigned char*, void*)>(e.tabulate_tensor_complex128);
  }
#endif // DOLFINX_NO_STDC_COMPLEX_KERNELS
  else
    throw std::runtime_error("Type not supported.");

  assert(tabulate_tensor);
  return Expression(coefficients, constants, std::span<const U>(X), Xshape,
                    tabulate_tensor, value_shape, argument_space);
}

/// @brief Create Expression from UFC input (with named coefficients and
/// constants).
template <dolfinx::scalar T, std::floating_point U = scalar_value_t<T>>
Expression<T, U> create_expression(
    const ufcx_expression& e,
    const std::map<std::string, std::shared_ptr<const Function<T, U>>>&
        coefficients,
    const std::map<std::string, std::shared_ptr<const Constant<T>>>& constants,
    std::shared_ptr<const FunctionSpace<U>> argument_space = nullptr)
{
  // Place coefficients in appropriate order
  std::vector<std::shared_ptr<const Function<T, U>>> coeff_map;
  std::vector<std::string> coefficient_names;
  coefficient_names.reserve(e.num_coefficients);
  for (int i = 0; i < e.num_coefficients; ++i)
    coefficient_names.push_back(e.coefficient_names[i]);

  for (const std::string& name : coefficient_names)
  {
    if (auto it = coefficients.find(name); it != coefficients.end())
      coeff_map.push_back(it->second);
    else
    {
      throw std::runtime_error("Expression coefficient \"" + name
                               + "\" not provided.");
    }
  }

  // Place constants in appropriate order
  std::vector<std::shared_ptr<const Constant<T>>> const_map;
  std::vector<std::string> constant_names;
  constant_names.reserve(e.num_constants);
  for (int i = 0; i < e.num_constants; ++i)
    constant_names.push_back(e.constant_names[i]);

  for (const std::string& name : constant_names)
  {
    if (auto it = constants.find(name); it != constants.end())
      const_map.push_back(it->second);
    else
    {
      throw std::runtime_error("Expression constant \"" + name
                               + "\" not provided.");
    }
  }

  return create_expression(e, coeff_map, const_map, argument_space);
}

} // namespace dolfinx::fem