1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
// Copyright (C) 2020 Chris Richardson
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include <algorithm>
#include <array>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <concepts>
#include <limits>
#include <numeric>
#include <span>
#include <utility>
#include <vector>
namespace dolfinx::geometry
{
namespace impl_gjk
{
/// @brief Determinant of 3x3 matrix A
/// @param A 3x3 matrix
/// @returns det(A)
template <typename T>
inline T det3(std::span<const T, 9> A)
{
T w0 = A[3 + 1] * A[2 * 3 + 2] - A[3 + 2] * A[3 * 2 + 1];
T w1 = A[3] * A[3 * 2 + 2] - A[3 + 2] * A[3 * 2];
T w2 = A[3] * A[3 * 2 + 1] - A[3 + 1] * A[3 * 2];
return A[0] * w0 - A[1] * w1 + A[2] * w2;
}
/// @brief Dot product of vectors a and b, both size 3.
/// @param a Vector of size 3
/// @param b Vector of size 3
/// @returns a.b
template <typename Vec>
inline Vec::value_type dot3(const Vec& a, const Vec& b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/// @brief Find the barycentric coordinates in the simplex `s`, of the point in
/// `s` which is closest to the origin.
/// @param s Simplex described by a set of points in 3D, row-major, flattened.
/// @return Barycentric coordinates of the point in s closest to the origin.
/// @note `s` may be an interval, a triangle or a tetrahedron.
template <typename T>
std::vector<T> nearest_simplex(std::span<const T> s)
{
assert(s.size() % 3 == 0);
const std::size_t s_rows = s.size() / 3;
SPDLOG_DEBUG("GJK: nearest_simplex({})", s_rows);
switch (s_rows)
{
case 2:
{
// Simplex is an interval. Point may lie on the interval, or on either end.
// Compute lm = dot(s0, ds / |ds|)
std::span<const T, 3> s0 = s.template subspan<0, 3>();
std::span<const T, 3> s1 = s.template subspan<3, 3>();
T lm = dot3(s0, s0) - dot3(s0, s1);
if (lm < 0.0)
{
SPDLOG_DEBUG("GJK: line point A");
return {1.0, 0.0};
}
T mu = dot3(s1, s1) - dot3(s1, s0);
if (mu < 0.0)
{
SPDLOG_DEBUG("GJK: line point B");
return {0.0, 1.0};
}
SPDLOG_DEBUG("GJK line: AB");
T f1 = 1.0 / (lm + mu);
return {mu * f1, lm * f1};
}
case 3:
{
// Simplex is a triangle. Point may lie in one of 7 regions (outside near a
// vertex, outside near an edge, or on the interior)
auto a = s.template subspan<0, 3>();
auto b = s.template subspan<3, 3>();
auto c = s.template subspan<6, 3>();
T aa = dot3(a, a);
T ab = dot3(a, b);
T ac = dot3(a, c);
T d1 = aa - ab;
T d2 = aa - ac;
if (d1 < 0.0 and d2 < 0.0)
{
SPDLOG_DEBUG("GJK: Point A");
return {1.0, 0.0, 0.0};
}
T bb = dot3(b, b);
T bc = dot3(b, c);
T d3 = bb - ab;
T d4 = bb - bc;
if (d3 < 0.0 and d4 < 0.0)
{
SPDLOG_DEBUG("GJK: Point B");
return {0.0, 1.0, 0.0};
}
T cc = dot3(c, c);
T d5 = cc - ac;
T d6 = cc - bc;
if (d5 < 0.0 and d6 < 0.0)
{
SPDLOG_DEBUG("GJK: Point C");
return {0.0, 0.0, 1.0};
}
T vc = d4 * d1 - d1 * d3 + d3 * d2;
if (vc < 0.0 and d1 > 0.0 and d3 > 0.0)
{
SPDLOG_DEBUG("GJK: edge AB");
T f1 = 1.0 / (d1 + d3);
T lm = d1 * f1;
T mu = d3 * f1;
return {mu, lm, 0.0};
}
T vb = d1 * d5 - d5 * d2 + d2 * d6;
if (vb < 0.0 and d2 > 0.0 and d5 > 0.0)
{
SPDLOG_DEBUG("GJK: edge AC");
T f1 = 1.0 / (d2 + d5);
T lm = d2 * f1;
T mu = d5 * f1;
return {mu, 0.0, lm};
}
T va = d3 * d6 - d6 * d4 + d4 * d5;
if (va < 0.0 and d4 > 0.0 and d6 > 0.0)
{
SPDLOG_DEBUG("GJK: edge BC");
T f1 = 1.0 / (d4 + d6);
T lm = d4 * f1;
T mu = d6 * f1;
return {0.0, mu, lm};
}
SPDLOG_DEBUG("GJK: triangle ABC");
T f1 = 1.0 / (va + vb + vc);
return {va * f1, vb * f1, vc * f1};
}
case 4:
{
// Most complex case, where simplex is a tetrahedron, with 15 possible
// outcomes (4 vertices, 6 edges, 4 facets and the interior).
std::vector<T> rv{0, 0, 0, 0};
T d[4][4];
for (int i = 0; i < 4; ++i)
// Compute dot products at each vertex
{
std::span<const T, 3> si(s.begin() + i * 3, 3);
T sii = dot3(si, si);
bool out = true;
for (int j = 0; j < 4; ++j)
{
std::span<const T, 3> sj(s.begin() + j * 3, 3);
if (i != j)
d[i][j] = (sii - dot3(si, sj));
SPDLOG_DEBUG("d[{}][{}] = {}", i, j, static_cast<double>(d[i][j]));
if (d[i][j] > 0.0)
out = false;
}
if (out)
{
// Return if a vertex is closest
rv[i] = 1.0;
return rv;
}
}
SPDLOG_DEBUG("Check for edges");
// Check if an edge is closest
T v[6][2] = {{0.0}};
int edges[6][2] = {{2, 3}, {1, 3}, {1, 2}, {0, 3}, {0, 2}, {0, 1}};
for (int i = 0; i < 6; ++i)
{
// Four vertices of the tetrahedron, j0 and j1 at the ends of the current
// edge and j2 and j3 on the opposing edge.
int j0 = edges[i][0];
int j1 = edges[i][1];
int j2 = edges[5 - i][0];
int j3 = edges[5 - i][1];
v[i][0] = d[j1][j2] * d[j0][j1] - d[j0][j1] * d[j1][j0]
+ d[j1][j0] * d[j0][j2];
v[i][1] = d[j1][j3] * d[j0][j1] - d[j0][j1] * d[j1][j0]
+ d[j1][j0] * d[j0][j3];
SPDLOG_DEBUG("v[{}] = {},{}", i, (double)v[i][0], (double)v[i][1]);
if (v[i][0] <= 0.0 and v[i][1] <= 0.0 and d[j0][j1] >= 0.0
and d[j1][j0] >= 0.0)
{
// On an edge
T f1 = 1.0 / (d[j0][j1] + d[j1][j0]);
rv[j0] = f1 * d[j1][j0];
rv[j1] = f1 * d[j0][j1];
return rv;
}
}
// Now check the facets of a tetrahedron
std::array<T, 4> w;
std::array<T, 9> M;
std::span<const T, 9> Mspan(M.begin(), M.size());
std::copy(s.begin(), s.begin() + 9, M.begin());
w[0] = -det3(Mspan);
std::copy(s.begin() + 9, s.begin() + 12, M.begin() + 6);
w[1] = det3(Mspan);
std::copy(s.begin() + 6, s.begin() + 9, M.begin() + 3);
w[2] = -det3(Mspan);
std::copy(s.begin() + 3, s.begin() + 6, M.begin() + 0);
w[3] = det3(Mspan);
T wsum = w[0] + w[1] + w[2] + w[3];
if (wsum < 0.0)
{
w[0] = -w[0];
w[1] = -w[1];
w[2] = -w[2];
w[3] = -w[3];
wsum = -wsum;
}
if (w[0] < 0.0 and v[2][0] > 0.0 and v[4][0] > 0.0 and v[5][0] > 0.0)
{
T f1 = 1.0 / (v[2][0] + v[4][0] + v[5][0]);
return {v[2][0] * f1, v[4][0] * f1, v[5][0] * f1, 0.0};
}
if (w[1] < 0.0 and v[1][0] > 0.0 and v[3][0] > 0.0 and v[5][1] > 0.0)
{
T f1 = 1.0 / (v[1][0] + v[3][0] + v[5][1]);
return {v[1][0] * f1, v[3][0] * f1, 0.0, v[5][1] * f1};
}
if (w[2] < 0.0 and v[0][0] > 0.0 and v[3][1] > 0 and v[4][1] > 0.0)
{
T f1 = 1.0 / (v[0][0] + v[3][1] + v[4][1]);
return {v[0][0] * f1, 0.0, v[3][1] * f1, v[4][1] * f1};
}
if (w[3] < 0.0 and v[0][1] > 0.0 and v[1][1] > 0.0 and v[2][1] > 0.0)
{
T f1 = 1.0 / (v[0][1] + v[1][1] + v[2][1]);
return {0.0, v[0][1] * f1, v[1][1] * f1, v[2][1] * f1};
}
// Point lies in interior of tetrahedron with these barycentric coordinates
return {w[3] / wsum, w[2] / wsum, w[1] / wsum, w[0] / wsum};
}
default:
throw std::runtime_error("Number of rows defining simplex not supported.");
}
}
/// @brief 'support' function, finds point p in bd which maximises p.v
/// @param bd Body described by set of 3D points, flattened
/// @param v A point in 3D
/// @returns Point p in `bd` which maximises p.v
template <typename T>
std::array<T, 3> support(std::span<const T> bd, std::array<T, 3> v)
{
int i = 0;
T qmax = bd[0] * v[0] + bd[1] * v[1] + bd[2] * v[2];
for (std::size_t m = 1; m < bd.size() / 3; ++m)
{
T q = bd[3 * m] * v[0] + bd[3 * m + 1] * v[1] + bd[3 * m + 2] * v[2];
if (q > qmax)
{
qmax = q;
i = m;
}
}
return {bd[3 * i], bd[3 * i + 1], bd[3 * i + 2]};
}
} // namespace impl_gjk
/// @brief Compute the distance between two convex bodies `p0` and `q0`, each
/// defined by a set of points.
///
/// Uses the Gilbert–Johnson–Keerthi (GJK) distance algorithm.
///
/// @param[in] p0 Body 1 list of points, `shape=(num_points, 3)`. Row-major
/// storage.
/// @param[in] q0 Body 2 list of points, `shape=(num_points, 3)`. Row-major
/// storage.
/// @tparam T Floating point type
/// @tparam U Floating point type used for geometry computations internally,
/// which should be higher precision than T, to maintain accuracy.
/// @return shortest vector between bodies
template <std::floating_point T,
typename U = boost::multiprecision::cpp_bin_float_double_extended>
std::array<T, 3> compute_distance_gjk(std::span<const T> p0,
std::span<const T> q0)
{
assert(p0.size() % 3 == 0);
assert(q0.size() % 3 == 0);
// Copy from T to type U
std::vector<U> p(p0.begin(), p0.end());
std::vector<U> q(q0.begin(), q0.end());
constexpr int maxk = 15; // Maximum number of iterations of the GJK algorithm
// Tolerance
const U eps = 1.0e4 * std::numeric_limits<T>::epsilon();
// Initialise vector and simplex
std::array<U, 3> v = {p[0] - q[0], p[1] - q[1], p[2] - q[2]};
std::vector<U> s = {v[0], v[1], v[2]};
// Begin GJK iteration
int k;
for (k = 0; k < maxk; ++k)
{
// Support function
std::array w1
= impl_gjk::support(std::span<const U>(p), {-v[0], -v[1], -v[2]});
std::array w0
= impl_gjk::support(std::span<const U>(q), {v[0], v[1], v[2]});
const std::array<U, 3> w = {w1[0] - w0[0], w1[1] - w0[1], w1[2] - w0[2]};
// Break if any existing points are the same as w
assert(s.size() % 3 == 0);
std::size_t m;
for (m = 0; m < s.size() / 3; ++m)
{
auto it = std::next(s.begin(), 3 * m);
if (std::equal(it, std::next(it, 3), w.begin(), w.end()))
break;
}
if (m != s.size() / 3)
break;
// 1st exit condition (v - w).v = 0
const U vnorm2 = impl_gjk::dot3(v, v);
const U vw = vnorm2 - impl_gjk::dot3(v, w);
if (vw < (eps * vnorm2) or vw < eps)
break;
SPDLOG_DEBUG("GJK: vw={}/{}", static_cast<double>(vw),
static_cast<double>(eps));
// Add new vertex to simplex
s.insert(s.end(), w.begin(), w.end());
// Find nearest subset of simplex
std::vector<U> lmn = impl_gjk::nearest_simplex<U>(s);
// Recompute v and keep points with non-zero values in lmn
std::size_t j = 0;
v = {0.0, 0.0, 0.0};
for (std::size_t i = 0; i < lmn.size(); ++i)
{
std::span<const U> sc(std::next(s.begin(), 3 * i), 3);
if (lmn[i] > 0.0)
{
v[0] += lmn[i] * sc[0];
v[1] += lmn[i] * sc[1];
v[2] += lmn[i] * sc[2];
if (i > j)
std::copy(sc.begin(), sc.end(), std::next(s.begin(), 3 * j));
++j;
}
}
SPDLOG_DEBUG("new s size={}", 3 * j);
s.resize(3 * j);
const U vn = impl_gjk::dot3(v, v);
// 2nd exit condition - intersecting or touching
if (vn < eps * eps)
break;
}
if (k == maxk)
throw std::runtime_error("GJK error - max iteration limit reached");
return {static_cast<T>(v[0]), static_cast<T>(v[1]), static_cast<T>(v[2])};
}
} // namespace dolfinx::geometry
|