File: gjk.h

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (397 lines) | stat: -rw-r--r-- 11,367 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// Copyright (C) 2020 Chris Richardson
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later

#pragma once

#include <algorithm>
#include <array>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <concepts>
#include <limits>
#include <numeric>
#include <span>
#include <utility>
#include <vector>

namespace dolfinx::geometry
{

namespace impl_gjk
{

/// @brief Determinant of 3x3 matrix A
/// @param A 3x3 matrix
/// @returns det(A)
template <typename T>
inline T det3(std::span<const T, 9> A)
{
  T w0 = A[3 + 1] * A[2 * 3 + 2] - A[3 + 2] * A[3 * 2 + 1];
  T w1 = A[3] * A[3 * 2 + 2] - A[3 + 2] * A[3 * 2];
  T w2 = A[3] * A[3 * 2 + 1] - A[3 + 1] * A[3 * 2];
  return A[0] * w0 - A[1] * w1 + A[2] * w2;
}

/// @brief Dot product of vectors a and b, both size 3.
/// @param a Vector of size 3
/// @param b Vector of size 3
/// @returns a.b
template <typename Vec>
inline Vec::value_type dot3(const Vec& a, const Vec& b)
{
  return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}

/// @brief Find the barycentric coordinates in the simplex `s`, of the point in
/// `s` which is closest to the origin.
/// @param s Simplex described by a set of points in 3D, row-major, flattened.
/// @return Barycentric coordinates of the point in s closest to the origin.
/// @note `s` may be an interval, a triangle or a tetrahedron.
template <typename T>
std::vector<T> nearest_simplex(std::span<const T> s)
{
  assert(s.size() % 3 == 0);
  const std::size_t s_rows = s.size() / 3;

  SPDLOG_DEBUG("GJK: nearest_simplex({})", s_rows);

  switch (s_rows)
  {
  case 2:
  {
    // Simplex is an interval. Point may lie on the interval, or on either end.
    // Compute lm = dot(s0, ds / |ds|)
    std::span<const T, 3> s0 = s.template subspan<0, 3>();
    std::span<const T, 3> s1 = s.template subspan<3, 3>();

    T lm = dot3(s0, s0) - dot3(s0, s1);
    if (lm < 0.0)
    {
      SPDLOG_DEBUG("GJK: line point A");
      return {1.0, 0.0};
    }
    T mu = dot3(s1, s1) - dot3(s1, s0);
    if (mu < 0.0)
    {
      SPDLOG_DEBUG("GJK: line point B");
      return {0.0, 1.0};
    }

    SPDLOG_DEBUG("GJK line: AB");
    T f1 = 1.0 / (lm + mu);
    return {mu * f1, lm * f1};
  }
  case 3:
  {
    // Simplex is a triangle. Point may lie in one of 7 regions (outside near a
    // vertex, outside near an edge, or on the interior)
    auto a = s.template subspan<0, 3>();
    auto b = s.template subspan<3, 3>();
    auto c = s.template subspan<6, 3>();

    T aa = dot3(a, a);
    T ab = dot3(a, b);
    T ac = dot3(a, c);
    T d1 = aa - ab;
    T d2 = aa - ac;
    if (d1 < 0.0 and d2 < 0.0)
    {
      SPDLOG_DEBUG("GJK: Point A");
      return {1.0, 0.0, 0.0};
    }

    T bb = dot3(b, b);
    T bc = dot3(b, c);
    T d3 = bb - ab;
    T d4 = bb - bc;
    if (d3 < 0.0 and d4 < 0.0)
    {
      SPDLOG_DEBUG("GJK: Point B");
      return {0.0, 1.0, 0.0};
    }

    T cc = dot3(c, c);
    T d5 = cc - ac;
    T d6 = cc - bc;
    if (d5 < 0.0 and d6 < 0.0)
    {
      SPDLOG_DEBUG("GJK: Point C");
      return {0.0, 0.0, 1.0};
    }

    T vc = d4 * d1 - d1 * d3 + d3 * d2;
    if (vc < 0.0 and d1 > 0.0 and d3 > 0.0)
    {
      SPDLOG_DEBUG("GJK: edge AB");
      T f1 = 1.0 / (d1 + d3);
      T lm = d1 * f1;
      T mu = d3 * f1;
      return {mu, lm, 0.0};
    }
    T vb = d1 * d5 - d5 * d2 + d2 * d6;
    if (vb < 0.0 and d2 > 0.0 and d5 > 0.0)
    {
      SPDLOG_DEBUG("GJK: edge AC");
      T f1 = 1.0 / (d2 + d5);
      T lm = d2 * f1;
      T mu = d5 * f1;
      return {mu, 0.0, lm};
    }
    T va = d3 * d6 - d6 * d4 + d4 * d5;
    if (va < 0.0 and d4 > 0.0 and d6 > 0.0)
    {
      SPDLOG_DEBUG("GJK: edge BC");
      T f1 = 1.0 / (d4 + d6);
      T lm = d4 * f1;
      T mu = d6 * f1;
      return {0.0, mu, lm};
    }

    SPDLOG_DEBUG("GJK: triangle ABC");
    T f1 = 1.0 / (va + vb + vc);
    return {va * f1, vb * f1, vc * f1};
  }
  case 4:
  {
    // Most complex case, where simplex is a tetrahedron, with 15 possible
    // outcomes (4 vertices, 6 edges, 4 facets and the interior).
    std::vector<T> rv{0, 0, 0, 0};

    T d[4][4];
    for (int i = 0; i < 4; ++i)
    // Compute dot products at each vertex
    {
      std::span<const T, 3> si(s.begin() + i * 3, 3);
      T sii = dot3(si, si);
      bool out = true;
      for (int j = 0; j < 4; ++j)
      {
        std::span<const T, 3> sj(s.begin() + j * 3, 3);
        if (i != j)
          d[i][j] = (sii - dot3(si, sj));
        SPDLOG_DEBUG("d[{}][{}] = {}", i, j, static_cast<double>(d[i][j]));
        if (d[i][j] > 0.0)
          out = false;
      }
      if (out)
      {
        // Return if a vertex is closest
        rv[i] = 1.0;
        return rv;
      }
    }

    SPDLOG_DEBUG("Check for edges");

    // Check if an edge is closest
    T v[6][2] = {{0.0}};
    int edges[6][2] = {{2, 3}, {1, 3}, {1, 2}, {0, 3}, {0, 2}, {0, 1}};
    for (int i = 0; i < 6; ++i)
    {
      // Four vertices of the tetrahedron, j0 and j1 at the ends of the current
      // edge and j2  and j3 on the opposing edge.
      int j0 = edges[i][0];
      int j1 = edges[i][1];
      int j2 = edges[5 - i][0];
      int j3 = edges[5 - i][1];
      v[i][0] = d[j1][j2] * d[j0][j1] - d[j0][j1] * d[j1][j0]
                + d[j1][j0] * d[j0][j2];
      v[i][1] = d[j1][j3] * d[j0][j1] - d[j0][j1] * d[j1][j0]
                + d[j1][j0] * d[j0][j3];

      SPDLOG_DEBUG("v[{}] = {},{}", i, (double)v[i][0], (double)v[i][1]);
      if (v[i][0] <= 0.0 and v[i][1] <= 0.0 and d[j0][j1] >= 0.0
          and d[j1][j0] >= 0.0)
      {
        // On an edge
        T f1 = 1.0 / (d[j0][j1] + d[j1][j0]);
        rv[j0] = f1 * d[j1][j0];
        rv[j1] = f1 * d[j0][j1];
        return rv;
      }
    }

    // Now check the facets of a tetrahedron
    std::array<T, 4> w;
    std::array<T, 9> M;
    std::span<const T, 9> Mspan(M.begin(), M.size());
    std::copy(s.begin(), s.begin() + 9, M.begin());
    w[0] = -det3(Mspan);
    std::copy(s.begin() + 9, s.begin() + 12, M.begin() + 6);
    w[1] = det3(Mspan);
    std::copy(s.begin() + 6, s.begin() + 9, M.begin() + 3);
    w[2] = -det3(Mspan);
    std::copy(s.begin() + 3, s.begin() + 6, M.begin() + 0);
    w[3] = det3(Mspan);
    T wsum = w[0] + w[1] + w[2] + w[3];
    if (wsum < 0.0)
    {
      w[0] = -w[0];
      w[1] = -w[1];
      w[2] = -w[2];
      w[3] = -w[3];
      wsum = -wsum;
    }

    if (w[0] < 0.0 and v[2][0] > 0.0 and v[4][0] > 0.0 and v[5][0] > 0.0)
    {
      T f1 = 1.0 / (v[2][0] + v[4][0] + v[5][0]);
      return {v[2][0] * f1, v[4][0] * f1, v[5][0] * f1, 0.0};
    }

    if (w[1] < 0.0 and v[1][0] > 0.0 and v[3][0] > 0.0 and v[5][1] > 0.0)
    {
      T f1 = 1.0 / (v[1][0] + v[3][0] + v[5][1]);
      return {v[1][0] * f1, v[3][0] * f1, 0.0, v[5][1] * f1};
    }

    if (w[2] < 0.0 and v[0][0] > 0.0 and v[3][1] > 0 and v[4][1] > 0.0)
    {
      T f1 = 1.0 / (v[0][0] + v[3][1] + v[4][1]);
      return {v[0][0] * f1, 0.0, v[3][1] * f1, v[4][1] * f1};
    }

    if (w[3] < 0.0 and v[0][1] > 0.0 and v[1][1] > 0.0 and v[2][1] > 0.0)
    {
      T f1 = 1.0 / (v[0][1] + v[1][1] + v[2][1]);
      return {0.0, v[0][1] * f1, v[1][1] * f1, v[2][1] * f1};
    }

    // Point lies in interior of tetrahedron with these barycentric coordinates
    return {w[3] / wsum, w[2] / wsum, w[1] / wsum, w[0] / wsum};
  }
  default:
    throw std::runtime_error("Number of rows defining simplex not supported.");
  }
}

/// @brief 'support' function, finds point p in bd which maximises p.v
/// @param bd Body described by set of 3D points, flattened
/// @param v A point in 3D
/// @returns Point p in `bd` which maximises p.v
template <typename T>
std::array<T, 3> support(std::span<const T> bd, std::array<T, 3> v)
{
  int i = 0;
  T qmax = bd[0] * v[0] + bd[1] * v[1] + bd[2] * v[2];
  for (std::size_t m = 1; m < bd.size() / 3; ++m)
  {
    T q = bd[3 * m] * v[0] + bd[3 * m + 1] * v[1] + bd[3 * m + 2] * v[2];
    if (q > qmax)
    {
      qmax = q;
      i = m;
    }
  }

  return {bd[3 * i], bd[3 * i + 1], bd[3 * i + 2]};
}
} // namespace impl_gjk

/// @brief Compute the distance between two convex bodies `p0` and `q0`, each
/// defined by a set of points.
///
/// Uses the Gilbert–Johnson–Keerthi (GJK) distance algorithm.
///
/// @param[in] p0 Body 1 list of points, `shape=(num_points, 3)`. Row-major
/// storage.
/// @param[in] q0 Body 2 list of points, `shape=(num_points, 3)`. Row-major
/// storage.
/// @tparam T Floating point type
/// @tparam U Floating point type used for geometry computations internally,
/// which should be higher precision than T, to maintain accuracy.
/// @return shortest vector between bodies
template <std::floating_point T,
          typename U = boost::multiprecision::cpp_bin_float_double_extended>
std::array<T, 3> compute_distance_gjk(std::span<const T> p0,
                                      std::span<const T> q0)
{
  assert(p0.size() % 3 == 0);
  assert(q0.size() % 3 == 0);

  // Copy from T to type U
  std::vector<U> p(p0.begin(), p0.end());
  std::vector<U> q(q0.begin(), q0.end());

  constexpr int maxk = 15; // Maximum number of iterations of the GJK algorithm

  // Tolerance
  const U eps = 1.0e4 * std::numeric_limits<T>::epsilon();

  // Initialise vector and simplex
  std::array<U, 3> v = {p[0] - q[0], p[1] - q[1], p[2] - q[2]};
  std::vector<U> s = {v[0], v[1], v[2]};

  // Begin GJK iteration
  int k;
  for (k = 0; k < maxk; ++k)
  {
    // Support function
    std::array w1
        = impl_gjk::support(std::span<const U>(p), {-v[0], -v[1], -v[2]});
    std::array w0
        = impl_gjk::support(std::span<const U>(q), {v[0], v[1], v[2]});
    const std::array<U, 3> w = {w1[0] - w0[0], w1[1] - w0[1], w1[2] - w0[2]};

    // Break if any existing points are the same as w
    assert(s.size() % 3 == 0);
    std::size_t m;
    for (m = 0; m < s.size() / 3; ++m)
    {
      auto it = std::next(s.begin(), 3 * m);
      if (std::equal(it, std::next(it, 3), w.begin(), w.end()))
        break;
    }

    if (m != s.size() / 3)
      break;

    // 1st exit condition (v - w).v = 0
    const U vnorm2 = impl_gjk::dot3(v, v);
    const U vw = vnorm2 - impl_gjk::dot3(v, w);
    if (vw < (eps * vnorm2) or vw < eps)
      break;

    SPDLOG_DEBUG("GJK: vw={}/{}", static_cast<double>(vw),
                 static_cast<double>(eps));

    // Add new vertex to simplex
    s.insert(s.end(), w.begin(), w.end());

    // Find nearest subset of simplex
    std::vector<U> lmn = impl_gjk::nearest_simplex<U>(s);

    // Recompute v and keep points with non-zero values in lmn
    std::size_t j = 0;
    v = {0.0, 0.0, 0.0};
    for (std::size_t i = 0; i < lmn.size(); ++i)
    {
      std::span<const U> sc(std::next(s.begin(), 3 * i), 3);
      if (lmn[i] > 0.0)
      {
        v[0] += lmn[i] * sc[0];
        v[1] += lmn[i] * sc[1];
        v[2] += lmn[i] * sc[2];
        if (i > j)
          std::copy(sc.begin(), sc.end(), std::next(s.begin(), 3 * j));
        ++j;
      }
    }
    SPDLOG_DEBUG("new s size={}", 3 * j);
    s.resize(3 * j);

    const U vn = impl_gjk::dot3(v, v);
    // 2nd exit condition - intersecting or touching
    if (vn < eps * eps)
      break;
  }

  if (k == maxk)
    throw std::runtime_error("GJK error - max iteration limit reached");

  return {static_cast<T>(v[0]), static_cast<T>(v[1]), static_cast<T>(v[2])};
}

} // namespace dolfinx::geometry