1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
// Copyright (C) 2006-2019 Anders Logg and Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "cell_types.h"
#include <algorithm>
#include <basix/cell.h>
#include <cfloat>
#include <cstdlib>
#include <stdexcept>
using namespace dolfinx;
//-----------------------------------------------------------------------------
std::string mesh::to_string(CellType type)
{
switch (type)
{
case CellType::point:
return "point";
case CellType::interval:
return "interval";
case CellType::triangle:
return "triangle";
case CellType::tetrahedron:
return "tetrahedron";
case CellType::quadrilateral:
return "quadrilateral";
case CellType::pyramid:
return "pyramid";
case CellType::prism:
return "prism";
case CellType::hexahedron:
return "hexahedron";
default:
throw std::runtime_error("Unknown cell type.");
}
}
//-----------------------------------------------------------------------------
mesh::CellType mesh::to_type(const std::string& cell)
{
if (cell == "point")
return CellType::point;
else if (cell == "interval" or cell == "interval2D" or cell == "interval3D")
return CellType::interval;
else if (cell == "triangle" or cell == "triangle3D")
return CellType::triangle;
else if (cell == "tetrahedron")
return CellType::tetrahedron;
else if (cell == "quadrilateral" or cell == "quadrilateral3D")
return CellType::quadrilateral;
else if (cell == "pyramid")
return CellType::pyramid;
else if (cell == "prism")
return CellType::prism;
else if (cell == "hexahedron")
return CellType::hexahedron;
else
throw std::runtime_error("Unknown cell type (" + cell + ")");
}
//-----------------------------------------------------------------------------
mesh::CellType mesh::cell_entity_type(CellType type, int d, int index)
{
const int dim = cell_dim(type);
if (d == dim)
return type;
else if (d == 1)
return CellType::interval;
else if (d == (dim - 1))
return cell_facet_type(type, index);
else
return CellType::point;
}
//-----------------------------------------------------------------------------
mesh::CellType mesh::cell_facet_type(CellType type, int index)
{
switch (type)
{
case CellType::point:
return CellType::point;
case CellType::interval:
return CellType::point;
case CellType::triangle:
return CellType::interval;
case CellType::tetrahedron:
return CellType::triangle;
case CellType::quadrilateral:
return CellType::interval;
case CellType::pyramid:
if (index == 0)
return CellType::quadrilateral;
else
return CellType::triangle;
case CellType::prism:
if (index == 0 or index == 4)
return CellType::triangle;
else
return CellType::quadrilateral;
case CellType::hexahedron:
return CellType::quadrilateral;
default:
throw std::runtime_error("Unknown cell type.");
}
}
//-----------------------------------------------------------------------------
graph::AdjacencyList<int> mesh::get_entity_vertices(CellType type, int dim)
{
const std::vector<std::vector<int>> topology
= basix::cell::topology(cell_type_to_basix_type(type))[dim];
return graph::AdjacencyList<int>(topology);
}
//-----------------------------------------------------------------------------
graph::AdjacencyList<int> mesh::get_sub_entities(CellType type, int dim0,
int dim1)
{
// keep backward compatibility
if (type == CellType::interval)
return graph::AdjacencyList<int>(0);
else if (type == CellType::point)
return graph::AdjacencyList<int>(0);
const std::vector<std::vector<std::vector<int>>> connectivity
= basix::cell::sub_entity_connectivity(
cell_type_to_basix_type(type))[dim0];
std::vector<std::vector<int>> subset;
subset.reserve(connectivity.size());
for (auto& row : connectivity)
subset.emplace_back(row[dim1]);
return graph::AdjacencyList<int>(subset);
}
//-----------------------------------------------------------------------------
int mesh::cell_dim(CellType type)
{
return basix::cell::topological_dimension(cell_type_to_basix_type(type));
}
//-----------------------------------------------------------------------------
int mesh::cell_num_entities(CellType type, int dim)
{
assert(dim <= 3);
return basix::cell::num_sub_entities(cell_type_to_basix_type(type), dim);
}
//-----------------------------------------------------------------------------
bool mesh::is_simplex(CellType type) { return static_cast<int>(type) > 0; }
//-----------------------------------------------------------------------------
int mesh::num_cell_vertices(CellType type)
{
return std::abs(static_cast<int>(type));
}
//-----------------------------------------------------------------------------
std::map<std::array<int, 2>, std::vector<std::set<int>>>
mesh::cell_entity_closure(CellType cell_type)
{
const int cell_dim = mesh::cell_dim(cell_type);
std::array<int, 4> num_entities;
for (int i = 0; i <= cell_dim; ++i)
num_entities[i] = cell_num_entities(cell_type, i);
const graph::AdjacencyList<int> edge_v = get_entity_vertices(cell_type, 1);
const auto face_e = get_sub_entities(cell_type, 2, 1);
std::map<std::array<int, 2>, std::vector<std::set<int>>> entity_closure;
for (int dim = 0; dim <= cell_dim; ++dim)
{
for (int entity = 0; entity < num_entities[dim]; ++entity)
{
// Add self
entity_closure[{{dim, entity}}].resize(cell_dim + 1);
entity_closure[{{dim, entity}}][dim].insert(entity);
if (dim == 3)
{
// Add all sub-entities
for (int f = 0; f < num_entities[2]; ++f)
entity_closure[{{dim, entity}}][2].insert(f);
for (int e = 0; e < num_entities[1]; ++e)
entity_closure[{{dim, entity}}][1].insert(e);
for (int v = 0; v < num_entities[0]; ++v)
entity_closure[{{dim, entity}}][0].insert(v);
}
if (dim == 2)
{
CellType face_type = cell_entity_type(cell_type, 2, entity);
const int num_edges = cell_num_entities(face_type, 1);
for (int e = 0; e < num_edges; ++e)
{
// Add edge
const int edge_index = face_e.links(entity)[e];
entity_closure[{{dim, entity}}][1].insert(edge_index);
for (int v = 0; v < 2; ++v)
{
// Add vertex connected to edge
entity_closure[{{dim, entity}}][0].insert(
edge_v.links(edge_index)[v]);
}
}
}
if (dim == 1)
{
entity_closure[{{dim, entity}}][0].insert(edge_v.links(entity)[0]);
entity_closure[{{dim, entity}}][0].insert(edge_v.links(entity)[1]);
}
}
}
return entity_closure;
}
//-----------------------------------------------------------------------------
basix::cell::type mesh::cell_type_to_basix_type(CellType celltype)
{
switch (celltype)
{
case CellType::point:
return basix::cell::type::point;
case CellType::interval:
return basix::cell::type::interval;
case CellType::triangle:
return basix::cell::type::triangle;
case CellType::tetrahedron:
return basix::cell::type::tetrahedron;
case CellType::quadrilateral:
return basix::cell::type::quadrilateral;
case CellType::hexahedron:
return basix::cell::type::hexahedron;
case CellType::prism:
return basix::cell::type::prism;
case CellType::pyramid:
return basix::cell::type::pyramid;
default:
throw std::runtime_error("Unrecognised cell type.");
}
}
//-----------------------------------------------------------------------------
mesh::CellType mesh::cell_type_from_basix_type(basix::cell::type celltype)
{
switch (celltype)
{
case basix::cell::type::point:
return CellType::point;
case basix::cell::type::interval:
return CellType::interval;
case basix::cell::type::triangle:
return CellType::triangle;
case basix::cell::type::tetrahedron:
return CellType::tetrahedron;
case basix::cell::type::quadrilateral:
return CellType::quadrilateral;
case basix::cell::type::hexahedron:
return CellType::hexahedron;
case basix::cell::type::prism:
return CellType::prism;
case basix::cell::type::pyramid:
return CellType::pyramid;
default:
throw std::runtime_error("Unrecognised cell type.");
}
}
//-----------------------------------------------------------------------------
|