1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
|
// Copyright (C) 2010-2025 Garth N. Wells and Paul T. Kühner
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "graphbuild.h"
#include "cell_types.h"
#include <algorithm>
#include <dolfinx/common/MPI.h>
#include <dolfinx/common/Timer.h>
#include <dolfinx/common/log.h>
#include <dolfinx/common/sort.h>
#include <dolfinx/graph/AdjacencyList.h>
#include <mpi.h>
#include <numeric>
#include <optional>
#include <ranges>
#include <span>
#include <utility>
#include <vector>
using namespace dolfinx;
namespace
{
//-----------------------------------------------------------------------------
/// @brief Build nonlocal part of dual graph for mesh and return number
/// of non-local edges.
///
/// @note Scalable version.
///
/// @note graphbuild::compute_local_dual_graph should be called
/// before this function is called.
///
/// @param[in] comm MPI communicator
/// @param[in] facets Facets on this rank that are shared by only on
/// cell on this rank, i.e. candidates for possibly residing on other
/// processes. Each row in `facets` corresponds to a facet, and the row
/// data has the form `[v0, ..., v_{n-1}, -1, -1]`, where `v_i` are the
/// sorted vertex global indices of the facets and `-1` is a padding
/// value for the mixed topology case where facets can have differing
/// number of vertices.
/// @param[in] local_max_vertices_per_facet Number of columns for `facets`.
/// @param[in] cells Attached cell (local index) for each facet in
/// `facet`.
/// @param[in] local_dual_graph The dual graph for cells on this MPI rank
///
/// @return Global dual graph, including ghost edges (edges to
/// off-procss cells)
graph::AdjacencyList<std::int64_t> compute_nonlocal_dual_graph(
const MPI_Comm comm, std::span<const std::int64_t> facets,
std::size_t local_max_vertices_per_facet,
std::span<const std::int32_t> cells,
const graph::AdjacencyList<std::int32_t>& local_dual_graph)
{
spdlog::info("Build nonlocal part of mesh dual graph");
common::Timer timer("Compute non-local part of mesh dual graph");
// TODO: Two possible straightforward optimisations:
// 1. Do not send owned data to self via MPI.
// 2. Modify MPI::index_owner to use a subset of ranks as post offices.
// 3. Find the max buffer row size for the neighbourhood rather than
// globally.
//
// Less straightforward optimisations:
// 4. After matching, send back matches only, (and only to ranks with
// a match) (Note: this would complicate the communication and
// handling of buffers)
const int comm_size = dolfinx::MPI::size(comm);
// Return empty data if mesh is not distributed
if (comm_size == 1)
{
// Convert graph to int64_t and return
return graph::AdjacencyList(
std::vector<std::int64_t>(local_dual_graph.array().begin(),
local_dual_graph.array().end()),
local_dual_graph.offsets());
}
// Postoffice (PO) setup:
// a) facets need to globally decide on a consistent ownership model (without
// communication).
// - first (global) vertex index of a facet is used
// - dolfinx::MPI::index_owner deduces ownership
// b) every unmatched facet is send to owning PO
// - data for every facet: list of vertices + associated global cell idx
// c) PO identifies ghost edges
// - PO checks if a facet has been received from multiple processes
// - If so, found matched facet across process boundary -> introduce edge
// to dual graph.
// - store for each received cell a list of (remote) matches.
// d) PO communicates matched cells back to senders
// - adjacencylist of facet to cell connectivity is communicated.
// - first the number of matched facets (link count)
// - the unrolled matched cells (data)
// e) combine local dual graph and remote edges into parallel aware dual
// graph.
assert(local_max_vertices_per_facet == 0
or facets.size() % local_max_vertices_per_facet == 0);
#ifndef NDEBUG
{
// assert facets sorted
if (local_max_vertices_per_facet > 0)
{
for (std::size_t f = 0; f < facets.size() / local_max_vertices_per_facet;
++f)
{
std::span facet = facets.subspan(f * local_max_vertices_per_facet,
local_max_vertices_per_facet);
assert(std::is_sorted(facet.begin(), std::ranges::find(facet, -1)));
}
}
}
#endif
// Start (non-blocking) communication for cell offset
std::int64_t cell_offset = 0;
MPI_Request request_cell_offset;
{
const std::int64_t num_local = local_dual_graph.num_nodes();
MPI_Iexscan(&num_local, &cell_offset, 1, MPI_INT64_T, MPI_SUM, comm,
&request_cell_offset);
}
// Compute max_vertices_per_facet and vertex_range =
// [min_vertex_index, max_vertex_index] across all processes. Use
// first facet vertex for min/max index.
std::int32_t max_vertices_per_facet = -1;
std::array<std::int64_t, 2> vertex_range;
{
// Compute local quantities.
vertex_range[0]
= facets.size() > 0 ? std::numeric_limits<std::int64_t>::max() : 0;
vertex_range[1] = 0;
for (std::size_t i = 0; i < facets.size();
i += local_max_vertices_per_facet)
{
vertex_range[0] = std::min(vertex_range[0], facets[i]);
vertex_range[1] = std::max(vertex_range[1], facets[i]);
}
// Exchange.
// Note: to allow for single reduction we store -min_vertex_index,
// i.e. max -x_i = min x_i.
std::array<std::int64_t, 3> send
= {static_cast<std::int64_t>(local_max_vertices_per_facet),
-vertex_range[0], vertex_range[1]};
std::array<std::int64_t, 3> recv;
MPI_Allreduce(send.data(), recv.data(), 3, MPI_INT64_T, MPI_MAX, comm);
// Unpack.
max_vertices_per_facet = recv[0];
assert(max_vertices_per_facet >= 0);
vertex_range = {-recv[1], recv[2] + 1};
assert(0 <= vertex_range[0]);
assert(vertex_range[0] <= vertex_range[1]);
}
spdlog::debug("Max. vertices per facet={}", max_vertices_per_facet);
const std::int32_t buffer_shape1 = max_vertices_per_facet + 1;
// Build list of dest ranks and count number of items (facets) to send
// to each dest post office (by neighbourhood rank)
const std::size_t facet_count = cells.size();
std::vector<int> dest;
std::vector<std::int32_t> num_items_per_dest,
pos_to_neigh_rank(facet_count, -1);
{
// Build {dest, pos} list for each facet, and sort (dest is the post
// office rank)
std::vector<std::array<std::int32_t, 2>> dest_to_index;
dest_to_index.reserve(facet_count);
std::int64_t range = vertex_range[1] - vertex_range[0];
for (std::size_t f = 0; f < facet_count; ++f)
{
std::int64_t v0
= facets[f * local_max_vertices_per_facet] - vertex_range[0];
dest_to_index.push_back({dolfinx::MPI::index_owner(comm_size, v0, range),
static_cast<int>(f)});
}
std::ranges::sort(dest_to_index);
// Build list of dest ranks and count number of items (facets+cell) to
// send to each dest post office (by neighbourhood rank)
for (auto it = dest_to_index.begin(); it != dest_to_index.end();)
{
const int neigh_rank = dest.size();
// Store global rank
dest.push_back(it->front());
// Find iterator to next global rank
auto it1
= std::find_if(it, dest_to_index.end(),
[r = dest.back()](auto& idx) { return idx[0] != r; });
// Store number of items for current rank
num_items_per_dest.push_back(std::distance(it, it1));
// Set entry in map from local facet row index (position) to local
// destination rank
for (auto& e : std::ranges::subrange(it, it1))
pos_to_neigh_rank[e[1]] = neigh_rank;
// Advance iterator
it = it1;
}
}
assert(num_items_per_dest.size() == dest.size());
// Determine source ranks
const std::vector<int> src
= dolfinx::MPI::compute_graph_edges_nbx(comm, dest);
spdlog::info("Number of destination and source ranks in non-local dual graph "
"construction, and ratio to total number of ranks: {}, {}, "
"{}, {}",
dest.size(), src.size(),
static_cast<double>(dest.size()) / comm_size,
static_cast<double>(src.size()) / comm_size);
// Create neighbourhood communicator for sending data to
// post offices
MPI_Comm comm_po_post;
MPI_Dist_graph_create_adjacent(comm, src.size(), src.data(), MPI_UNWEIGHTED,
dest.size(), dest.data(), MPI_UNWEIGHTED,
MPI_INFO_NULL, false, &comm_po_post);
// Compute send displacements
std::vector<std::int32_t> send_disp(num_items_per_dest.size() + 1, 0);
std::partial_sum(num_items_per_dest.begin(), num_items_per_dest.end(),
std::next(send_disp.begin()));
// Wait for the MPI_Iexscan to complete (before using cell_offset)
MPI_Wait(&request_cell_offset, MPI_STATUS_IGNORE);
// Pack send buffer
std::vector<std::int32_t> send_indx_to_pos(send_disp.back());
std::vector<std::int64_t> send_buffer(buffer_shape1 * send_disp.back(), -1);
{
std::vector<std::int32_t> send_offsets = send_disp;
for (std::size_t f = 0; f < facet_count; ++f)
{
int neigh_dest = pos_to_neigh_rank[f];
std::size_t pos = send_offsets[neigh_dest];
send_indx_to_pos[pos] = f;
// Copy facet data into buffer
auto fdata = facets.subspan(f * local_max_vertices_per_facet,
local_max_vertices_per_facet);
std::span send_buffer_f(send_buffer.data() + buffer_shape1 * pos,
max_vertices_per_facet + 1);
std::ranges::copy(fdata, send_buffer_f.begin());
send_buffer_f.back() = cells[f] + cell_offset;
++send_offsets[neigh_dest];
}
}
// Send number of send items to post offices
std::vector<int> num_items_recv(src.size());
num_items_per_dest.reserve(1);
num_items_recv.reserve(1);
MPI_Neighbor_alltoall(num_items_per_dest.data(), 1, MPI_INT,
num_items_recv.data(), 1, MPI_INT, comm_po_post);
// Prepare receive displacement and buffers
std::vector<std::int32_t> recv_disp(num_items_recv.size() + 1, 0);
std::partial_sum(num_items_recv.begin(), num_items_recv.end(),
std::next(recv_disp.begin()));
// Send/receive data facet
MPI_Datatype compound_type;
MPI_Type_contiguous(buffer_shape1, MPI_INT64_T, &compound_type);
MPI_Type_commit(&compound_type);
std::vector<std::int64_t> recv_buffer(buffer_shape1 * recv_disp.back());
MPI_Neighbor_alltoallv(send_buffer.data(), num_items_per_dest.data(),
send_disp.data(), compound_type, recv_buffer.data(),
num_items_recv.data(), recv_disp.data(), compound_type,
comm_po_post);
MPI_Type_free(&compound_type);
MPI_Comm_free(&comm_po_post);
// Search for consecutive facets (-> dual graph edge between cells)
// and pack into send buffer. We store for every cell the number of matches,
// the offsets of each cell and the continuous data.
// Note: deges is short for dual edges.
std::vector<int> dedge_send_count(recv_disp.back());
std::vector<std::int32_t> dedge_send_displs(dedge_send_count.size() + 1, 0);
std::vector<std::int64_t> dedge_send_data;
{
// Compute sort permutation for received data
std::vector<int> sort_order(recv_buffer.size() / buffer_shape1);
std::iota(sort_order.begin(), sort_order.end(), 0);
std::ranges::sort(
sort_order, std::ranges::lexicographical_compare,
[max_vertices_per_facet, buffer_shape1, &recv_buffer](auto f)
{
auto begin = std::next(recv_buffer.begin(), f * buffer_shape1);
return std::ranges::subrange(
begin, std::next(begin, max_vertices_per_facet));
});
auto for_each_matched_pair = [buffer_shape1, max_vertices_per_facet,
&sort_order, &recv_buffer](auto&& lambda)
{
for (auto it = sort_order.begin(); it != sort_order.end();)
{
std::size_t offset0 = (*it) * buffer_shape1;
auto f0 = std::next(recv_buffer.data(), offset0);
// Find range of equal facets f0.
auto matching_facets = std::ranges::subrange(
it, std::find_if_not(
it, sort_order.end(),
[f0, &recv_buffer, buffer_shape1,
max_vertices_per_facet](auto idx) -> bool
{
std::size_t offset1 = idx * buffer_shape1;
auto f1 = std::next(recv_buffer.data(), offset1);
return std::equal(
f0, std::next(f0, max_vertices_per_facet), f1);
}));
for (auto facet_a_it = matching_facets.begin();
facet_a_it != matching_facets.end(); facet_a_it++)
{
for (auto facet_b_it = std::next(facet_a_it);
facet_b_it != matching_facets.end(); facet_b_it++)
{
int facet_a = *facet_a_it;
int facet_b = *facet_b_it;
std::int64_t cell_a
= recv_buffer[facet_a * buffer_shape1 + max_vertices_per_facet];
std::int64_t cell_b
= recv_buffer[facet_b * buffer_shape1 + max_vertices_per_facet];
lambda(facet_a, cell_a, facet_b, cell_b);
}
}
it = matching_facets.end();
}
};
// Iterate matching facets to compute count/offset information of dual edges
for_each_matched_pair(
[&dedge_send_count](int facet_a, std::int64_t /* cell_a */, int facet_b,
std::int64_t /* cell_b */)
{
++dedge_send_count[facet_a];
++dedge_send_count[facet_b];
});
std::partial_sum(dedge_send_count.begin(), dedge_send_count.end(),
std::next(dedge_send_displs.begin()));
std::int32_t send_dual_edges_size
= std::accumulate(dedge_send_count.begin(), dedge_send_count.end(), 0);
dedge_send_data.resize(send_dual_edges_size);
// Iterate matching facets to store dual edges
std::vector<std::int32_t> offset = dedge_send_displs;
for_each_matched_pair(
[&dedge_send_data, &offset](int facet_a, std::int64_t cell_a,
int facet_b, std::int64_t cell_b)
{
dedge_send_data[offset[facet_a]++] = cell_b;
dedge_send_data[offset[facet_b]++] = cell_a;
});
}
// Create neighbourhood communicator for sending data from post
// offices
MPI_Comm comm_po_receive;
MPI_Dist_graph_create_adjacent(comm, dest.size(), dest.data(), MPI_UNWEIGHTED,
src.size(), src.data(), MPI_UNWEIGHTED,
MPI_INFO_NULL, false, &comm_po_receive);
// Send PO->recipient: matched cell counts (non-blocking)
std::vector<int> dedge_recv_count(send_disp.back());
MPI_Request dedge_recv_count_request;
MPI_Ineighbor_alltoallv(dedge_send_count.data(), num_items_recv.data(),
recv_disp.data(), MPI_INT, dedge_recv_count.data(),
num_items_per_dest.data(), send_disp.data(), MPI_INT,
comm_po_receive, &dedge_recv_count_request);
// Prepare send data for matched facets. Note, we have prepared adjacency
// information for all cells. Here we retrieve the offset and displacement
// data corresponding to the per process adjacencylists.
// Note: pp in variable names is short for per-process.
std::vector<int> dedge_send_count_pp(num_items_recv.size(), 0);
std::vector<std::int32_t> dedge_send_displs_pp(dedge_send_count_pp.size() + 1,
0);
{
int index = 0;
for (std::size_t i = 0; i < num_items_recv.size(); i++)
{
for (int j = 0; j < num_items_recv[i]; j++)
dedge_send_count_pp[i] += dedge_send_count[index + j];
index += num_items_recv[i];
}
std::partial_sum(dedge_send_count_pp.begin(), dedge_send_count_pp.end(),
std::next(dedge_send_displs_pp.begin()));
}
// Compute matched facet receive counts and displacements.
std::vector<int> dedge_recv_count_pp(num_items_per_dest.size(), 0);
std::vector<std::int32_t> dedge_recv_displs_pp(dedge_recv_count_pp.size() + 1,
0);
MPI_Wait(&dedge_recv_count_request, MPI_STATUS_IGNORE);
{
int index = 0;
for (std::size_t i = 0; i < num_items_per_dest.size(); i++)
{
for (int j = 0; j < num_items_per_dest[i]; j++)
dedge_recv_count_pp[i] += dedge_recv_count[index + j];
index += num_items_per_dest[i];
}
std::partial_sum(dedge_recv_count_pp.begin(), dedge_recv_count_pp.end(),
std::next(dedge_recv_displs_pp.begin()));
}
// Exchange flattened list of matched facets
std::vector<std::int64_t> recv_dual_edges(dedge_recv_displs_pp.back());
MPI_Neighbor_alltoallv(dedge_send_data.data(), dedge_send_count_pp.data(),
dedge_send_displs_pp.data(),
dolfinx::MPI::mpi_t<std::int64_t>,
recv_dual_edges.data(), dedge_recv_count_pp.data(),
dedge_recv_displs_pp.data(),
dolfinx::MPI::mpi_t<std::int64_t>, comm_po_receive);
MPI_Comm_free(&comm_po_receive);
// --- Build global dual graph
// Compute adjacency list offsets
std::vector<std::int32_t> offsets(local_dual_graph.num_nodes() + 1, 0);
{
// Count number of adjacency list edges
std::vector<std::int32_t> num_edges(local_dual_graph.num_nodes(), 0);
std::adjacent_difference(std::next(local_dual_graph.offsets().begin()),
local_dual_graph.offsets().end(),
num_edges.begin());
for (std::size_t i = 0; i < dedge_recv_count.size(); ++i)
{
std::size_t cell_idx = send_indx_to_pos[i];
std::size_t cell = cells[cell_idx];
num_edges[cell] += dedge_recv_count[i];
}
// Compute adjacency list offsets
std::partial_sum(num_edges.cbegin(), num_edges.cend(),
std::next(offsets.begin()));
}
// Compute adjacency list data (edges)
std::vector<std::int64_t> data(offsets.back());
{
std::vector<std::int32_t> disp = offsets;
// Copy local data and add cell offset
for (std::int32_t i = 0; i < local_dual_graph.num_nodes(); ++i)
{
auto e = local_dual_graph.links(i);
disp[i] += e.size();
std::ranges::transform(e, std::next(data.begin(), offsets[i]),
[cell_offset](auto x) { return x + cell_offset; });
}
// Add non-local data
int offset = 0;
for (std::size_t i = 0; i < dedge_recv_count.size(); i++)
{
std::int32_t cell_idx = send_indx_to_pos[i];
std::int32_t cell = cells[cell_idx];
for (int j = 0; j < dedge_recv_count[i]; j++)
{
std::int32_t _cell_offset = disp[cell]++;
std::int64_t node = recv_dual_edges[offset + j];
data[_cell_offset] = node;
}
offset += dedge_recv_count[i];
}
// local connections are possibly introduced again by remote -> remove
// duplicates
std::size_t duplicates_count = 0;
for (std::size_t node = 0; node < offsets.size() - 1; node++)
{
// Account for offset
offsets[node] -= duplicates_count;
auto links = std::ranges::subrange(
std::next(data.begin(), offsets[node]),
std::next(data.begin(), offsets[node + 1] - duplicates_count));
std::ranges::sort(links);
auto duplicate_links = std::ranges::unique(links);
if (duplicate_links.empty())
continue;
data.erase(duplicate_links.begin(), duplicate_links.end());
duplicates_count += std::ranges::size(duplicate_links);
}
offsets[offsets.size() - 1] -= duplicates_count;
}
return graph::AdjacencyList(std::move(data), std::move(offsets));
}
//-----------------------------------------------------------------------------
} // namespace
//-----------------------------------------------------------------------------
std::tuple<graph::AdjacencyList<std::int32_t>, std::vector<std::int64_t>,
std::size_t, std::vector<std::int32_t>>
mesh::build_local_dual_graph(
std::span<const CellType> celltypes,
const std::vector<std::span<const std::int64_t>>& cells,
std::optional<std::int32_t> max_facet_to_cell_links)
{
spdlog::info("Build local part of mesh dual graph (mixed)");
common::Timer timer("Compute local part of mesh dual graph (mixed)");
if (std::size_t ncells_local
= std::accumulate(cells.begin(), cells.end(), 0,
[](std::size_t s, std::span<const std::int64_t> c)
{ return s + c.size(); });
ncells_local == 0)
{
// Empty mesh on this process
return {graph::AdjacencyList<std::int32_t>(0), std::vector<std::int64_t>(),
0, std::vector<std::int32_t>()};
}
if (cells.size() != celltypes.size())
{
throw std::runtime_error(
"Number of cell types must match number of cell arrays.");
};
int tdim = mesh::cell_dim(celltypes.front());
// 1) Create indexing offset for each cell type and determine max
// number of vertices per facet -> size computations for later on
// used data structures
// TODO: cell_offsets can be removed?
std::vector<std::int32_t> cell_offsets{0};
cell_offsets.reserve(cells.size() + 1);
int max_vertices_per_facet = 0;
int facet_count = 0;
for (std::size_t j = 0; j < cells.size(); ++j)
{
CellType cell_type = celltypes[j];
std::span<const std::int64_t> _cells = cells[j];
assert(tdim == mesh::cell_dim(cell_type));
int num_cell_vertices = mesh::cell_num_entities(cell_type, 0);
int num_cell_facets = mesh::cell_num_entities(cell_type, tdim - 1);
std::int32_t num_cells = _cells.size() / num_cell_vertices;
cell_offsets.push_back(cell_offsets.back() + num_cells);
facet_count += num_cell_facets * num_cells;
graph::AdjacencyList<std::int32_t> cell_facets
= mesh::get_entity_vertices(cell_type, tdim - 1);
// Determine/update maximum number of vertices for facet
std::ranges::for_each(
std::views::iota(0, cell_facets.num_nodes()),
[&max = max_vertices_per_facet, &cell_facets](auto node)
{ max = std::max(max, cell_facets.num_links(node)); });
}
// 2) Build a list of (all) facets, defined by sorted vertices, with
// the connected cell index after the vertices. For v_ij the j-th
// vertex of the i-th facet. The last index is the cell index (non
// unique).
// facets = [v_11, v_12, v_13, -1, ..., -1, 0,
// v_21, v_22, v_23, -1, ..., -1, 0,
// ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
// v_n1, v_n2, -1, -1, ..., -1, n]
const int shape1 = max_vertices_per_facet + 1;
std::vector<std::int64_t> facets;
facets.reserve(facet_count * shape1);
constexpr std::int32_t padding_value = -1;
for (std::size_t j = 0; j < cells.size(); ++j)
{
const CellType& cell_type = celltypes[j];
std::span _cells = cells[j];
int num_cell_vertices = mesh::cell_num_entities(cell_type, 0);
std::int32_t num_cells = _cells.size() / num_cell_vertices;
graph::AdjacencyList<int> cell_facets
= mesh::get_entity_vertices(cell_type, tdim - 1);
for (std::int32_t c = 0; c < num_cells; ++c)
{
// Loop over cell facets
std::span v = _cells.subspan(num_cell_vertices * c, num_cell_vertices);
for (int f = 0; f < cell_facets.num_nodes(); ++f)
{
std::span facet_vertices = cell_facets.links(f);
std::ranges::transform(facet_vertices, std::back_inserter(facets),
[v](auto idx) { return v[idx]; });
// TODO: radix_sort?
std::sort(std::prev(facets.end(), facet_vertices.size()), facets.end());
facets.insert(facets.end(),
max_vertices_per_facet - facet_vertices.size(),
padding_value);
facets.push_back(c + cell_offsets[j]);
}
}
}
// 3) Sort facets by vertex key
std::vector<std::size_t> perm(facets.size() / shape1, 0);
std::iota(perm.begin(), perm.end(), 0);
std::ranges::sort(perm, std::ranges::lexicographical_compare,
[&facets, shape1](auto f)
{
auto begin = std::next(facets.begin(), f * shape1);
return std::ranges::subrange(begin,
std::next(begin, shape1));
});
// // 4) Iterate over sorted list of facets. Facets shared by more than
// one cell lead to a graph edge to be added. Facets that are not
// shared are stored as these might be shared by a cell on another
// process.
std::vector<std::int64_t> unmatched_facets;
std::vector<std::int32_t> local_cells;
std::vector<std::array<std::int32_t, 2>> edges;
{
for (auto it = perm.begin(); it != perm.end();)
{
std::size_t facet_index = *it;
std::span facet(facets.data() + facet_index * shape1, shape1);
// Find iterator to next facet different from f0 -> all facets in
// [it, it_next_facet) describe the same facet
auto matching_facets = std::ranges::subrange(
it, std::find_if_not(it, perm.end(),
[facet, &facets, shape1](auto idx) -> bool
{
auto f1_it
= std::next(facets.begin(), idx * shape1);
return std::equal(facet.begin(),
std::prev(facet.end()),
f1_it);
}));
std::int32_t cell_count = matching_facets.size();
assert(cell_count >= 1);
if (!max_facet_to_cell_links.has_value()
or (cell_count < *max_facet_to_cell_links))
{
// Store unmatched facets and the attached cell
for (std::int32_t i = 0; i < cell_count; i++)
{
unmatched_facets.insert(unmatched_facets.end(), facet.begin(),
std::prev(facet.end()));
std::int32_t cell = facets[*std::next(it, i) * shape1 + (shape1 - 1)];
local_cells.push_back(cell);
}
}
// Add dual graph edges (one direction only, other direction is
// added later). In the range [it, it_next_facet), all
// combinations are added.
for (auto facet_a_it = it; facet_a_it != matching_facets.end();
facet_a_it++)
{
std::span facet_a(facets.data() + *facet_a_it * shape1, shape1);
std::int32_t cell_a = facet_a.back();
for (auto facet_b_it = std::next(facet_a_it);
facet_b_it != matching_facets.end(); facet_b_it++)
{
std::span facet_b(facets.data() + *facet_b_it * shape1, shape1);
std::int32_t cell_b = facet_b.back();
edges.push_back({cell_a, cell_b});
}
}
// Update iterator
it = matching_facets.end();
}
}
// 5) Build adjacency list data. Prepare data structure and assemble
// into. Important: we have only computed one direction of the dual
// edges, we add both forward and backward to the final data
// structure.
std::vector<std::int32_t> num_links(cell_offsets.back(), 0);
for (auto [a, b] : edges)
{
++num_links[a];
++num_links[b];
}
std::vector<std::int32_t> offsets(num_links.size() + 1, 0);
std::partial_sum(num_links.cbegin(), num_links.cend(),
std::next(offsets.begin()));
std::vector<std::int32_t> data(offsets.back());
std::ranges::for_each(edges,
[&data, pos = offsets](auto e) mutable
{
data[pos[e[0]]++] = e[1];
data[pos[e[1]]++] = e[0];
});
return {graph::AdjacencyList(std::move(data), std::move(offsets)),
std::move(unmatched_facets), max_vertices_per_facet,
std::move(local_cells)};
}
//-----------------------------------------------------------------------------
graph::AdjacencyList<std::int64_t>
mesh::build_dual_graph(MPI_Comm comm, std::span<const CellType> celltypes,
const std::vector<std::span<const std::int64_t>>& cells,
std::optional<std::int32_t> max_facet_to_cell_links)
{
spdlog::info("Building mesh dual graph");
// Compute local part of dual graph (cells are graph nodes, and edges
// are connections by facet)
auto [local_graph, facets, shape1, fcells]
= mesh::build_local_dual_graph(celltypes, cells, max_facet_to_cell_links);
// Extend with nonlocal edges and convert to global indices
graph::AdjacencyList graph
= compute_nonlocal_dual_graph(comm, facets, shape1, fcells, local_graph);
spdlog::info("Graph edges (local: {}, non-local: {})",
local_graph.offsets().back(),
graph.offsets().back() - local_graph.offsets().back());
return graph;
}
//-----------------------------------------------------------------------------
|