1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
|
// Copyright (C) 2006-2024 Anders Logg, Garth N. Wells and Chris Richardson
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "topologycomputation.h"
#include "Topology.h"
#include "cell_types.h"
#include <algorithm>
#include <boost/unordered_map.hpp>
#include <cstdint>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/MPI.h>
#include <dolfinx/common/Timer.h>
#include <dolfinx/common/log.h>
#include <dolfinx/common/sort.h>
#include <dolfinx/graph/AdjacencyList.h>
#include <memory>
#include <mpi.h>
#include <numeric>
#include <random>
#include <string>
#include <tuple>
#include <unordered_map>
#include <utility>
#include <vector>
using namespace dolfinx;
namespace
{
/// @brief Create an adjacency list from array of pairs, where the first
/// value in the pair is the node and the second value is the edge.
/// @param[in] data List if pairs
/// @param[in] size The number of edges in the graph. For example, this
/// can be used to build an adjacency list that includes 'owned' nodes only.
/// @pre The `data` array must be sorted.
template <typename U>
graph::AdjacencyList<int> create_adj_list(U& data, std::int32_t size)
{
std::ranges::sort(data);
auto [unique_end, range_end] = std::ranges::unique(data);
data.erase(unique_end, range_end);
std::vector<int> array;
array.reserve(data.size());
std::ranges::transform(data, std::back_inserter(array),
[](auto x) { return x.second; });
std::vector<std::int32_t> offsets{0};
offsets.reserve(size + 1);
auto it = data.begin();
for (std::int32_t e = 0; e < size; ++e)
{
auto it1
= std::find_if(it, data.end(), [e](auto x) { return x.first != e; });
offsets.push_back(offsets.back() + std::distance(it, it1));
it = it1;
}
return graph::AdjacencyList(std::move(array), std::move(offsets));
}
//-----------------------------------------------------------------------------
/// Get the ownership of an entity shared over several processes
/// @param processes Set of sharing processes
/// @param vertices Global vertex indices of entity
/// @return owning process number
template <typename U, typename V>
int get_ownership(const U& processes, const V& vertices)
{
// Use a deterministic random number generator, seeded with global
// vertex indices ensuring all processes get the same answer
std::mt19937 gen;
std::seed_seq seq(vertices.begin(), vertices.end());
gen.seed(seq);
std::vector<int> p(processes.begin(), processes.end());
int index = gen() % p.size();
int owner = p[index];
return owner;
}
//-----------------------------------------------------------------------------
/// Communicate with sharing processes to find out which entities are
/// ghosts and return a map (vector) to move these local indices to the
/// end of the local range. Also returns the index map, and shared
/// entities, i.e. the set of all processes which share each shared
/// entity.
/// @param[in] comm MPI Communicator
/// @param[in] cell_map Index map for cell distribution
/// @param[in] vertex_map Index map for vertex distribution
/// @param[in] entity_list List of entities, each entity represented by
/// its local vertex indices
/// @param[in] num_vertices_per_e Number of vertices per entity
/// @param[in] num_entities_per_cell Number of entities per cell
/// @param[in] entity_index Initial numbering for each row in
/// entity_list
/// @returns Local indices, the index map and shared entities
std::tuple<std::vector<int>, common::IndexMap, std::vector<std::int32_t>>
get_local_indexing(MPI_Comm comm, const common::IndexMap& vertex_map,
std::span<const std::int32_t> entity_list,
int num_vertices_per_e,
const std::vector<std::int8_t>& ghost_status,
std::span<const std::int32_t> entity_index)
{
// entity_list contains all the entities for all the cells, listed as
// local vertex indices, and entity_index contains the initial
// numbering of the entities.
// entity_list entity_index
// e.g. cell0-ent0: [0,1,2] 15
// cell0-ent1: [1,2,3] 23
// cell1-ent0: [0,1,2] 15
// cell1-ent1: [1,2,6] 24
// ...
// Find the maximum entity index, hence the number of entities
std::int32_t entity_count = 0;
if (auto mx = std::ranges::max_element(entity_index);
mx != entity_index.end())
{
entity_count = *mx + 1;
}
//---------
// Create a symmetric neighbor_comm from vertex_ranks
// Get sharing ranks for each vertex
graph::AdjacencyList<int> vertex_ranks = vertex_map.index_to_dest_ranks();
// Create unique list of ranks that share vertices (owners of)
std::vector<int> ranks(vertex_ranks.array().begin(),
vertex_ranks.array().end());
std::ranges::sort(ranks);
auto [unique_end, range_end] = std::ranges::unique(ranks);
ranks.erase(unique_end, range_end);
MPI_Comm neighbor_comm;
MPI_Dist_graph_create_adjacent(
comm, ranks.size(), ranks.data(), MPI_UNWEIGHTED, ranks.size(),
ranks.data(), MPI_UNWEIGHTED, MPI_INFO_NULL, false, &neighbor_comm);
std::vector<std::vector<std::int64_t>> send_entities(ranks.size());
std::vector<std::vector<std::int32_t>> send_index(ranks.size());
// Get all "possibly shared" entities, based on vertex sharing. Send
// to other processes, and see if we get the same back.
// Map from entity (defined by global vertex indices) to local entity
// index
std::vector<std::int64_t> entity_to_local_idx;
std::vector<std::int32_t> perm;
{
// If another rank shares all vertices of an entity, it may need the
// entity Set of sharing procs for each entity, counting vertex hits
std::vector<std::int64_t> vglobal(num_vertices_per_e);
std::vector<int> entity_ranks;
for (auto entity_idx = entity_index.begin();
entity_idx != entity_index.end(); ++entity_idx)
{
// Get entity vertices
std::size_t pos = std::distance(entity_index.begin(), entity_idx);
std::span entity
= entity_list.subspan(pos * num_vertices_per_e, num_vertices_per_e);
// Build list of ranks that share vertices of the entity, and sort
entity_ranks.clear();
for (auto v : entity)
{
entity_ranks.insert(entity_ranks.end(), vertex_ranks.links(v).begin(),
vertex_ranks.links(v).end());
}
std::ranges::sort(entity_ranks);
// If the number of vertices shared with a rank is
// 'num_vertices_per_e', then add entity data to the send buffer
auto it = entity_ranks.begin();
while (it != entity_ranks.end())
{
auto it1 = std::find_if(it, entity_ranks.end(),
[r0 = *it](auto r1) { return r1 != r0; });
if (std::distance(it, it1) == num_vertices_per_e)
{
vertex_map.local_to_global(entity, vglobal);
std::ranges::sort(vglobal);
entity_to_local_idx.insert(entity_to_local_idx.end(), vglobal.begin(),
vglobal.end());
entity_to_local_idx.push_back(*entity_idx);
// Only send entities that are not known to be ghosts
if (ghost_status[*entity_idx] != 1)
{
auto itr_local = std::ranges::lower_bound(ranks, *it);
assert(itr_local != ranks.end() and *itr_local == *it);
const int r = std::distance(ranks.begin(), itr_local);
// Entity entity_idx may be shared with rank r
send_entities[r].insert(send_entities[r].end(), vglobal.begin(),
vglobal.end());
send_index[r].push_back(*entity_idx);
}
}
it = it1;
}
}
perm.resize(entity_to_local_idx.size() / (num_vertices_per_e + 1));
std::iota(perm.begin(), perm.end(), 0);
auto range_by_index = [&, shape = num_vertices_per_e + 1](auto e)
{
auto begin = std::next(entity_to_local_idx.begin(), e * shape);
return std::ranges::subrange(begin, std::next(begin, shape));
};
std::ranges::sort(perm, std::ranges::lexicographical_compare,
range_by_index);
auto [unique_end, range_end]
= std::ranges::unique(perm, std::ranges::equal, range_by_index);
perm.erase(unique_end, range_end);
}
// Get shared entities of this dimension, and also match up an index
// for the received entities (from other processes) with the indices
// of the sent entities (to other processes)
// Send/receive entities
std::vector<std::int64_t> recv_data;
std::vector<int> send_sizes, send_disp, recv_disp, recv_sizes;
{
std::vector<std::int64_t> send_buffer;
for (auto& x : send_entities)
{
send_sizes.push_back(x.size());
send_buffer.insert(send_buffer.end(), x.begin(), x.end());
}
assert(send_sizes.size() == ranks.size());
// Build send displacements
send_disp = {0};
std::partial_sum(send_sizes.begin(), send_sizes.end(),
std::back_inserter(send_disp));
recv_sizes.resize(ranks.size());
send_sizes.reserve(1);
recv_sizes.reserve(1);
MPI_Neighbor_alltoall(send_sizes.data(), 1, MPI_INT, recv_sizes.data(), 1,
MPI_INT, neighbor_comm);
// Build recv displacements
recv_disp = {0};
std::partial_sum(recv_sizes.begin(), recv_sizes.end(),
std::back_inserter(recv_disp));
recv_data.resize(recv_disp.back());
MPI_Neighbor_alltoallv(send_buffer.data(), send_sizes.data(),
send_disp.data(), MPI_INT64_T, recv_data.data(),
recv_sizes.data(), recv_disp.data(), MPI_INT64_T,
neighbor_comm);
}
// List of (local index, sorted global vertices) pairs received from
// other ranks. The list is eventually sorted.
std::vector<std::pair<std::int32_t, std::int64_t>>
shared_entity_to_global_vertices_data;
// List of (local entity index, global MPI ranks)
std::vector<std::pair<std::int32_t, int>> shared_entities_data;
// Compare received and sent entity keys. Any received entities
// not found in entity_to_local_idx will have recv_index
// set to -1.
const int mpi_rank = dolfinx::MPI::rank(comm);
std::vector<std::int32_t> recv_index;
recv_index.reserve(recv_disp.size() - 1);
for (std::size_t r = 0; r < recv_disp.size() - 1; ++r)
{
// Loop over received entities (defined by array of entity vertices)
for (int j = recv_disp[r]; j < recv_disp[r + 1]; j += num_vertices_per_e)
{
std::span<const std::int64_t> entity(recv_data.data() + j,
num_vertices_per_e);
auto it = std::lower_bound(
perm.begin(), perm.end(), entity,
[&entities = entity_to_local_idx,
shape = num_vertices_per_e](auto& e0, auto& e1)
{
auto it0 = std::next(entities.begin(), e0 * (shape + 1));
return std::lexicographical_compare(it0, std::next(it0, shape),
e1.begin(), e1.end());
});
if (it != perm.end())
{
auto offset = (*it) * (num_vertices_per_e + 1);
std::span<const std::int64_t> e(entity_to_local_idx.data() + offset,
num_vertices_per_e + 1);
if (std::equal(e.begin(), std::prev(e.end()), entity.begin()))
{
auto idx = e.back();
shared_entities_data.push_back({idx, ranks[r]});
shared_entities_data.push_back({idx, mpi_rank});
recv_index.push_back(idx);
std::ranges::transform(
entity, std::back_inserter(shared_entity_to_global_vertices_data),
[idx](auto v) -> std::pair<std::int32_t, std::int64_t>
{ return {idx, v}; });
}
else
recv_index.push_back(-1);
}
else
recv_index.push_back(-1);
}
}
const graph::AdjacencyList<int> shared_entities
= create_adj_list(shared_entities_data, entity_count);
const graph::AdjacencyList<int> shared_entities_v
= create_adj_list(shared_entity_to_global_vertices_data, entity_count);
//---------
// Determine ownership of shared entities
std::vector<std::int32_t> local_index(entity_count, -1);
std::vector<std::int32_t> interprocess_entities;
std::int32_t num_local;
{
std::int32_t c = 0;
// Index non-ghost entities
for (int i = 0; i < entity_count; ++i)
{
// Definitely ghost
if (ghost_status[i] == 1)
continue;
if (auto ranks = shared_entities.links(i); ranks.empty())
{
// Definitely local, unshared
local_index[i] = c++;
}
else
{
// Shared with another process
interprocess_entities.push_back(i);
auto vertices = shared_entities_v.links(i);
assert(!vertices.empty());
int owner_rank = get_ownership(ranks, vertices);
if (owner_rank == mpi_rank)
{
// Take ownership
local_index[i] = c++;
}
}
}
num_local = c;
std::ranges::transform(local_index, local_index.begin(), [&c](auto index)
{ return index == -1 ? c++ : index; });
assert(c == entity_count);
// Convert interprocess entities to local_index
std::ranges::transform(interprocess_entities, interprocess_entities.begin(),
[&local_index](auto i) { return local_index[i]; });
}
//---------
// Communicate global indices to other processes
std::vector<int> ghost_owners(entity_count - num_local, -1);
std::vector<std::int64_t> ghost_indices(entity_count - num_local, -1);
{
const std::int64_t _num_local = num_local;
std::int64_t local_offset = 0;
MPI_Exscan(&_num_local, &local_offset, 1, MPI_INT64_T, MPI_SUM, comm);
// Send global indices for same entities that we sent before. This
// uses the same pattern as before, so we can match up the received
// data to the indices in recv_index
std::vector<std::int64_t> send_global_index_data;
for (const auto& indices : send_index)
{
std::ranges::transform(
indices, std::back_inserter(send_global_index_data),
[&local_index, size = num_local,
offset = local_offset](auto idx) -> std::int64_t
{
// If not in our local range, send -1.
return local_index[idx] < size ? offset + local_index[idx] : -1;
});
}
// Transform send/receive sizes and displacements for scalar send
for (auto x : {&send_sizes, &send_disp, &recv_sizes, &recv_disp})
std::ranges::transform(*x, x->begin(), [num_vertices_per_e](auto a)
{ return a / num_vertices_per_e; });
recv_data.resize(recv_disp.back());
MPI_Neighbor_alltoallv(send_global_index_data.data(), send_sizes.data(),
send_disp.data(), MPI_INT64_T, recv_data.data(),
recv_sizes.data(), recv_disp.data(), MPI_INT64_T,
neighbor_comm);
MPI_Comm_free(&neighbor_comm);
// Map back received indices
for (std::size_t r = 0; r < recv_disp.size() - 1; ++r)
{
for (int i = recv_disp[r]; i < recv_disp[r + 1]; ++i)
{
const std::int64_t gi = recv_data[i];
const std::int32_t idx = recv_index[i];
if (gi != -1 and idx != -1)
{
assert(local_index[idx] >= num_local);
ghost_indices[local_index[idx] - num_local] = gi;
ghost_owners[local_index[idx] - num_local] = ranks[r];
}
}
}
assert(std::find(ghost_indices.begin(), ghost_indices.end(), -1)
== ghost_indices.end());
}
common::IndexMap index_map(comm, num_local, ghost_indices, ghost_owners);
// Create map from initial numbering to new local indices
std::vector<std::int32_t> new_entity_index(entity_index.size());
std::ranges::transform(entity_index, new_entity_index.begin(),
[&local_index](auto index)
{ return local_index[index]; });
return {std::move(new_entity_index), std::move(index_map),
std::move(interprocess_entities)};
}
//-----------------------------------------------------------------------------
/// Compute entities of dimension d
///
/// @param[in] comm MPI communicator (TODO: full or neighbor hood?)
/// @param[in] cells Adjacency list for cell-vertex connectivity
/// @param[in] shared_vertices TODO
/// @param[in] cell_type Cell type
/// @param[in] dim Topological dimension of the entities to be computed
/// @return Returns the (cell-entity connectivity, entity-vertex
/// connectivity, index map for the entity distribution across
/// processes, shared entities)
std::tuple<std::vector<std::shared_ptr<graph::AdjacencyList<std::int32_t>>>,
graph::AdjacencyList<std::int32_t>, common::IndexMap,
std::vector<std::int32_t>>
compute_entities_by_key_matching(
MPI_Comm comm,
std::vector<
std::tuple<mesh::CellType,
std::shared_ptr<const graph::AdjacencyList<std::int32_t>>,
std::shared_ptr<const common::IndexMap>>>
cell_lists,
const common::IndexMap& vertex_index_map, mesh::CellType entity_type,
int dim)
{
if (dim == 0)
{
throw std::runtime_error(
"Cannot create vertices for topology. Should already exist.");
}
assert(cell_dim(entity_type) == dim);
// Start timer
common::Timer timer("Compute entities of dim = " + std::to_string(dim));
std::vector<std::vector<std::int32_t>> cell_type_entities(cell_lists.size());
std::vector<std::int32_t> cell_type_offsets{0};
for (std::size_t k = 0; k < cell_lists.size(); ++k)
{
mesh::CellType cell_type = std::get<0>(cell_lists[k]);
auto cells = std::get<1>(cell_lists[k]);
const std::size_t num_cells = cells->num_nodes();
for (int i = 0; i < cell_num_entities(cell_type, dim); ++i)
{
if (cell_entity_type(cell_type, dim, i) == entity_type)
cell_type_entities[k].push_back(i);
}
cell_type_offsets.push_back(cell_type_offsets.back()
+ num_cells * cell_type_entities[k].size());
}
int num_vertices_per_entity = num_cell_vertices(entity_type);
std::vector<std::int32_t> entity_list(cell_type_offsets.back()
* num_vertices_per_entity);
for (std::size_t k = 0; k < cell_lists.size(); ++k)
{
auto cell_type = std::get<0>(cell_lists[k]);
auto cells = std::get<1>(cell_lists[k]);
auto cell_index_map = std::get<2>(cell_lists[k]);
// Get indices of desired entities within cell. Usually this will be all
// entities, but for prism or pyramid facets, we will just pick out
// triangle or quad facets.
// Create map from cell vertices to entity vertices
auto e_vertices = get_entity_vertices(cell_type, dim);
const std::size_t num_cells = cells->num_nodes();
int num_entities_per_cell = cell_type_entities[k].size();
for (std::size_t c = 0; c < num_cells; ++c)
{
// Get vertices from each cell
auto vertices = cells->links(c);
for (int i = 0; i < num_entities_per_cell; ++i)
{
const std::int32_t idx = c * num_entities_per_cell + i;
auto ev = e_vertices.links(cell_type_entities[k][i]);
// Get entity vertices. Padded with -1 if fewer than
// max_vertices_per_entity
// NOTE Entity orientation is determined by vertex ordering. The
// orientation of an entity with respect to the cell may differ from its
// global mesh orientation. Hence, we reorder the vertices so that
// each entity's orientation agrees with their global orientation.
// FIXME This might be better below when the entity to vertex
// connectivity is computed
std::vector<std::int32_t> entity_vertices(ev.size());
for (std::size_t j = 0; j < ev.size(); ++j)
entity_vertices[j] = vertices[ev[j]];
// Orient the entities. Simply sort according to global vertex index
// for simplices
std::vector<std::int64_t> global_vertices(entity_vertices.size());
vertex_index_map.local_to_global(entity_vertices, global_vertices);
std::vector<std::size_t> perm(global_vertices.size());
std::iota(perm.begin(), perm.end(), 0);
std::ranges::sort(
perm, [&global_vertices](std::size_t i0, std::size_t i1)
{ return global_vertices[i0] < global_vertices[i1]; });
// For quadrilaterals, the vertex opposite the lowest vertex should
// be last
if (entity_type == mesh::CellType::quadrilateral)
{
std::size_t min_vertex_idx = perm[0];
std::size_t opposite_vertex_index = 3 - min_vertex_idx;
auto it = std::find(perm.begin(), perm.end(), opposite_vertex_index);
assert(it != perm.end());
std::rotate(it, it + 1, perm.end());
}
for (std::size_t j = 0; j < ev.size(); ++j)
entity_list[(cell_type_offsets[k] + idx) * num_vertices_per_entity
+ j]
= entity_vertices[perm[j]];
}
}
}
// Start numbering entities
std::vector<std::int32_t> entity_index(cell_type_offsets.back());
std::int32_t entity_count = 0;
{
// Copy list and sort vertices of each entity into (reverse) order
std::vector<std::int32_t> entity_list_sorted = entity_list;
for (std::size_t j = 0; j < entity_index.size(); ++j)
{
auto it
= std::next(entity_list_sorted.begin(), j * num_vertices_per_entity);
std::sort(it, std::next(it, num_vertices_per_entity), std::less<>());
}
// Sort the list and label uniquely
const std::vector<std::int32_t> sort_order
= dolfinx::sort_by_perm<std::int32_t>(entity_list_sorted,
num_vertices_per_entity);
std::vector<std::int32_t> entity(num_vertices_per_entity),
entity0(num_vertices_per_entity);
auto it = sort_order.begin();
while (it != sort_order.end())
{
// First entity in new index range
std::size_t offset = (*it) * num_vertices_per_entity;
std::span e0(entity_list_sorted.data() + offset, num_vertices_per_entity);
// Find iterator to next entity
auto it1 = std::find_if_not(
it, sort_order.end(),
[e0, &entity_list_sorted, num_vertices_per_entity](auto idx) -> bool
{
std::size_t offset = idx * num_vertices_per_entity;
return std::equal(e0.begin(), e0.end(),
std::next(entity_list_sorted.begin(), offset));
});
// Set entity unique index
std::for_each(it, it1, [&entity_index, entity_count](auto idx)
{ entity_index[idx] = entity_count; });
// Advance iterator and increment entity
it = it1;
++entity_count;
}
}
//---------
// Set ghost status array values
// 0 = entities that are only in ghost cells (i.e. definitely not owned)
// 1 = entities with local ownership or ownership that needs deciding
std::vector<std::int8_t> ghost_status(entity_count, 1);
for (std::size_t k = 0; k < cell_lists.size(); ++k)
{
auto cells = std::get<1>(cell_lists[k]);
[[maybe_unused]] const std::size_t num_cells = cells->num_nodes();
auto cell_map = std::get<2>(cell_lists[k]);
int num_entities_per_cell = cell_type_entities[k].size();
assert(cell_map->size_local() + cell_map->num_ghosts() == (int)num_cells);
const std::int32_t ghost_offset = cell_map->size_local();
// Tag all entities in local cells with 0, leaving entities which only
// appear in ghost cells tagged.
for (std::int32_t i = 0; i < ghost_offset * num_entities_per_cell; ++i)
{
const std::int32_t idx = entity_index[i + cell_type_offsets[k]];
ghost_status[idx] = 0;
}
}
// Communicate with other processes to find out which entities are
// ghosted and shared. Remap the numbering so that ghosts are at the
// end.
auto [local_index, index_map, interprocess_entities]
= get_local_indexing(comm, vertex_index_map, entity_list,
num_vertices_per_entity, ghost_status, entity_index);
// Entity-vertex connectivity
std::vector<std::int32_t> ev_array(entity_count * num_vertices_per_entity);
graph::AdjacencyList ev = graph::regular_adjacency_list(
std::move(ev_array), num_vertices_per_entity);
for (std::int32_t i = 0; i < cell_type_offsets.back(); ++i)
{
std::copy_n(std::next(entity_list.begin(), i * num_vertices_per_entity),
num_vertices_per_entity, ev.links(local_index[i]).begin());
}
std::vector<std::shared_ptr<graph::AdjacencyList<std::int32_t>>> ce(
cell_lists.size());
for (std::size_t k = 0; k < cell_lists.size(); ++k)
{
if (!cell_type_entities[k].empty())
{
std::vector tmp(std::next(local_index.begin(), cell_type_offsets[k]),
std::next(local_index.begin(), cell_type_offsets[k + 1]));
ce[k] = std::make_shared<graph::AdjacencyList<std::int32_t>>(
graph::regular_adjacency_list(std::move(tmp),
cell_type_entities[k].size()));
}
}
return {ce, std::move(ev), std::move(index_map),
std::move(interprocess_entities)};
}
//-----------------------------------------------------------------------------
/// Compute connectivity from entities of dimension d0 to entities of
/// dimension d1 using the transpose connectivity (d1 -> d0)
///
/// @param[in] c_d1_d0 The connectivity from entities of dimension d1 to
/// entities of dimension d0.
/// @param[in] num_entities_d0 The number of entities of dimension d0.
/// @return The connectivity from entities of dimension d0 to entities
/// of dimension d1.
graph::AdjacencyList<std::int32_t>
compute_from_transpose(const graph::AdjacencyList<std::int32_t>& c_d1_d0,
const int num_entities_d0)
{
// Compute number of connections for each e0
std::vector<std::int32_t> num_connections(num_entities_d0, 0);
for (int e1 = 0; e1 < c_d1_d0.num_nodes(); ++e1)
{
for (std::int32_t e0 : c_d1_d0.links(e1))
num_connections[e0]++;
}
// Compute offsets
std::vector<std::int32_t> offsets(num_connections.size() + 1, 0);
std::partial_sum(num_connections.begin(), num_connections.end(),
std::next(offsets.begin()));
std::vector<std::int32_t> counter(num_connections.size(), 0);
std::vector<std::int32_t> connections(offsets[offsets.size() - 1]);
for (int e1 = 0; e1 < c_d1_d0.num_nodes(); ++e1)
for (std::int32_t e0 : c_d1_d0.links(e1))
connections[offsets[e0] + counter[e0]++] = e1;
return graph::AdjacencyList(std::move(connections), std::move(offsets));
}
//-----------------------------------------------------------------------------
/// Compute the d0 -> d1 connectivity, where d0 > d1
/// @param[in] c_d0_0 The d0 -> 0 (entity (d0) to vertex) connectivity
/// @param[in] c_d0_0 The d1 -> 0 (entity (d1) to vertex) connectivity
/// @param[in] cell_type_d0 The cell type for entities of dimension d0
/// @return The d0 -> d1 connectivity
graph::AdjacencyList<std::int32_t>
compute_from_map(const graph::AdjacencyList<std::int32_t>& c_d0_0,
const graph::AdjacencyList<std::int32_t>& c_d1_0)
{
// Make a map from the sorted edge vertices to the edge index
boost::unordered_map<std::array<std::int32_t, 2>, std::int32_t> edge_to_index;
edge_to_index.reserve(c_d1_0.num_nodes());
std::array<std::int32_t, 2> key;
for (int e = 0; e < c_d1_0.num_nodes(); ++e)
{
std::span<const std::int32_t> v = c_d1_0.links(e);
assert(v.size() == key.size());
std::partial_sort_copy(v.begin(), v.end(), key.begin(), key.end());
edge_to_index.insert({key, e});
}
// Number of edges for a tri/quad is the same as number of vertices so
// AdjacencyList will have same offset pattern
std::vector<std::int32_t> connections;
connections.reserve(c_d0_0.array().size());
std::vector<std::int32_t> offsets(c_d0_0.offsets());
// Search for edges of facet in map, and recover index
const graph::AdjacencyList<int> tri_vertices_ref
= get_entity_vertices(mesh::CellType::triangle, 1);
const graph::AdjacencyList<int> quad_vertices_ref
= get_entity_vertices(mesh::CellType::quadrilateral, 1);
for (int e = 0; e < c_d0_0.num_nodes(); ++e)
{
auto e0 = c_d0_0.links(e);
auto vref = (e0.size() == 3) ? &tri_vertices_ref : &quad_vertices_ref;
for (std::size_t i = 0; i < e0.size(); ++i)
{
auto v = vref->links(i);
for (int j = 0; j < 2; ++j)
key[j] = e0[v[j]];
std::ranges::sort(key);
auto it = edge_to_index.find(key);
assert(it != edge_to_index.end());
connections.push_back(it->second);
}
}
connections.shrink_to_fit();
return graph::AdjacencyList(std::move(connections), std::move(offsets));
}
//-----------------------------------------------------------------------------
} // namespace
//-----------------------------------------------------------------------------
std::tuple<std::vector<std::shared_ptr<graph::AdjacencyList<std::int32_t>>>,
std::shared_ptr<graph::AdjacencyList<std::int32_t>>,
std::shared_ptr<common::IndexMap>, std::vector<std::int32_t>>
mesh::compute_entities(const Topology& topology, int dim, CellType entity_type)
{
spdlog::info("Computing mesh entities of dimension {}", dim);
// Vertices must always exist
if (dim == 0)
{
return {std::vector<std::shared_ptr<graph::AdjacencyList<std::int32_t>>>(),
nullptr, nullptr, std::vector<std::int32_t>()};
}
{
auto idx = std::ranges::find(topology.entity_types(dim), entity_type);
assert(idx != topology.entity_types(dim).end());
int index = std::distance(topology.entity_types(dim).begin(), idx);
if (topology.connectivity({dim, index}, {0, 0}))
{
return {
std::vector<std::shared_ptr<graph::AdjacencyList<std::int32_t>>>(),
nullptr, nullptr, std::vector<std::int32_t>()};
}
}
const int tdim = topology.dim();
// Lists of all cells by cell type
std::vector<CellType> cell_types = topology.entity_types(tdim);
std::vector<std::tuple<
mesh::CellType, std::shared_ptr<const graph::AdjacencyList<std::int32_t>>,
std::shared_ptr<const common::IndexMap>>>
cell_lists(cell_types.size());
auto cell_index_maps = topology.index_maps(tdim);
for (std::size_t i = 0; i < cell_types.size(); ++i)
{
auto cell_map = cell_index_maps[i];
assert(cell_map);
auto cells = topology.connectivity({tdim, int(i)}, {0, 0});
if (!cells)
throw std::runtime_error("Cell connectivity missing.");
cell_lists[i] = {cell_types[i], cells, cell_map};
}
auto vertex_map = topology.index_map(0);
assert(vertex_map);
// c->e, e->v
auto [d0, d1, im, interprocess_entities] = compute_entities_by_key_matching(
topology.comm(), cell_lists, *vertex_map, entity_type, dim);
return {d0,
std::make_shared<graph::AdjacencyList<std::int32_t>>(std::move(d1)),
std::make_shared<common::IndexMap>(std::move(im)),
std::move(interprocess_entities)};
}
//-----------------------------------------------------------------------------
std::array<std::shared_ptr<graph::AdjacencyList<std::int32_t>>, 2>
mesh::compute_connectivity(const Topology& topology, std::array<int, 2> d0,
std::array<int, 2> d1)
{
spdlog::info("Requesting connectivity ({}, {}) - ({}, {})",
std::to_string(d0[0]), std::to_string(d0[1]),
std::to_string(d1[0]), std::to_string(d1[1]));
// Return if connectivity has already been computed
if (topology.connectivity(d0, d1))
return {nullptr, nullptr};
// Return if no connectivity is possible
if (d0[0] == d1[0] and d0[1] != d1[1])
return {nullptr, nullptr};
// No connectivity between these cell types
CellType c0 = topology.entity_types(d0[0])[d0[1]];
CellType c1 = topology.entity_types(d1[0])[d1[1]];
if ((c0 == CellType::hexahedron and c1 == CellType::triangle)
or (c0 == CellType::triangle and c1 == CellType::hexahedron))
{
return {nullptr, nullptr};
}
if ((c0 == CellType::tetrahedron and c1 == CellType::quadrilateral)
or (c0 == CellType::quadrilateral and c1 == CellType::tetrahedron))
{
return {nullptr, nullptr};
}
// Get entities if they exist
std::shared_ptr<const graph::AdjacencyList<std::int32_t>> c_d0_0
= topology.connectivity(d0, {0, 0});
if (d0[0] > 0 and !topology.connectivity(d0, {0, 0}))
{
throw std::runtime_error("Missing entities of dimension "
+ std::to_string(d0[0]) + ".");
}
std::shared_ptr<const graph::AdjacencyList<std::int32_t>> c_d1_0
= topology.connectivity(d1, {0, 0});
if (d1[0] > 0 and !topology.connectivity(d1, {0, 0}))
{
throw std::runtime_error("Missing entities of dimension "
+ std::to_string(d1[0]) + ".");
}
// Start timer
common::Timer timer("Compute connectivity " + std::to_string(d0[0]) + "-"
+ std::to_string(d1[1]));
// Decide how to compute the connectivity
if (d0 == d1)
{
return {std::make_shared<graph::AdjacencyList<std::int32_t>>(
c_d0_0->num_nodes()),
nullptr};
}
else if (d0[0] < d1[0])
{
// Compute connectivity d1 - d0 (if needed), and take transpose
if (!topology.connectivity(d1, d0))
{
// Only possible case is edge->facet
assert(d0[0] == 1 and d1[0] == 2);
auto c_d1_d0 = std::make_shared<graph::AdjacencyList<std::int32_t>>(
compute_from_map(*c_d1_0, *c_d0_0));
spdlog::info("Computing mesh connectivity {}-{} from transpose.", d0[0],
d1[0]);
auto c_d0_d1 = std::make_shared<graph::AdjacencyList<std::int32_t>>(
compute_from_transpose(*c_d1_d0, c_d0_0->num_nodes()));
return {c_d0_d1, c_d1_d0};
}
else
{
assert(c_d0_0);
assert(topology.connectivity(d1, d0));
spdlog::info("Computing mesh connectivity {}-{} from transpose.",
std::to_string(d0[0]), std::to_string(d1[0]));
auto c_d0_d1 = std::make_shared<graph::AdjacencyList<std::int32_t>>(
compute_from_transpose(*topology.connectivity(d1, d0),
c_d0_0->num_nodes()));
return {c_d0_d1, nullptr};
}
}
else if (d0[0] > d1[0])
{
// Compute by mapping vertices from a lower dimension entity to
// those of a higher dimension entity
// Only possible case is facet->edge
assert(d0[0] == 2 and d1[0] == 1);
auto c_d0_d1 = std::make_shared<graph::AdjacencyList<std::int32_t>>(
compute_from_map(*c_d0_0, *c_d1_0));
return {c_d0_d1, nullptr};
}
else
throw std::runtime_error("Entity dimension error when computing topology.");
}
//--------------------------------------------------------------------------
|