1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
|
// Copyright (C) 2019-2024 Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include "EntityMap.h"
#include "Mesh.h"
#include "Topology.h"
#include "graphbuild.h"
#include <algorithm>
#include <basix/mdspan.hpp>
#include <concepts>
#include <cstdint>
#include <dolfinx/graph/AdjacencyList.h>
#include <dolfinx/graph/ordering.h>
#include <dolfinx/graph/partition.h>
#include <functional>
#include <mpi.h>
#include <numeric>
#include <optional>
#include <span>
#include <vector>
/// @file utils.h
/// @brief Functions supporting mesh operations
namespace dolfinx::fem
{
class ElementDofLayout;
}
namespace dolfinx::mesh
{
enum class CellType : std::int8_t;
/// Enum for different partitioning ghost modes
enum class GhostMode : std::uint8_t
{
none,
shared_facet
};
namespace impl
{
/// @brief Re-order the nodes of a fixed-degree adjacency list.
/// @param[in,out] list Fixed-degree adjacency list stored row-major.
/// Degree is equal to `list.size() / nodemap.size()`.
/// @param[in] nodemap Map from old to new index, i.e. for an old index
/// `i` the new index is `nodemap[i]`.
template <typename T>
void reorder_list(std::span<T> list, std::span<const std::int32_t> nodemap)
{
if (nodemap.empty())
return;
assert(list.size() % nodemap.size() == 0);
std::size_t degree = list.size() / nodemap.size();
const std::vector<T> orig(list.begin(), list.end());
for (std::size_t n = 0; n < nodemap.size(); ++n)
{
std::span links_old(orig.data() + n * degree, degree);
auto links_new = list.subspan(nodemap[n] * degree, degree);
std::ranges::copy(links_old, links_new.begin());
}
}
/// @brief Compute the coordinates of 'vertices' for entities of a given
/// dimension that are attached to specified facets.
///
/// @pre The provided facets must be on the boundary of the mesh.
///
/// @param[in] mesh Mesh to compute the vertex coordinates for.
/// @param[in] dim Topological dimension of the entities.
/// @param[in] facets List of facets (must be on the mesh boundary).
/// @return (0) Entities attached to the boundary facets (sorted), (1)
/// vertex coordinates (shape is `(3, num_vertices)`) and (2) map from
/// vertex in the full mesh to the position in the vertex coordinates
/// array (set to -1 if vertex in full mesh is not in the coordinate
/// array).
template <std::floating_point T>
std::tuple<std::vector<std::int32_t>, std::vector<T>, std::vector<std::int32_t>>
compute_vertex_coords_boundary(const mesh::Mesh<T>& mesh, int dim,
std::span<const std::int32_t> facets)
{
auto topology = mesh.topology();
assert(topology);
const int tdim = topology->dim();
if (dim == tdim)
{
throw std::runtime_error(
"Cannot use mesh::locate_entities_boundary (boundary) for cells.");
}
// Build set of vertices on boundary and set of boundary entities
mesh.topology_mutable()->create_connectivity(tdim - 1, 0);
mesh.topology_mutable()->create_connectivity(tdim - 1, dim);
std::vector<std::int32_t> vertices, entities;
{
auto f_to_v = topology->connectivity(tdim - 1, 0);
assert(f_to_v);
auto f_to_e = topology->connectivity(tdim - 1, dim);
assert(f_to_e);
for (auto f : facets)
{
auto v = f_to_v->links(f);
vertices.insert(vertices.end(), v.begin(), v.end());
auto e = f_to_e->links(f);
entities.insert(entities.end(), e.begin(), e.end());
}
// Build vector of boundary vertices
{
std::ranges::sort(vertices);
auto [unique_end, range_end] = std::ranges::unique(vertices);
vertices.erase(unique_end, range_end);
}
{
std::ranges::sort(entities);
auto [unique_end, range_end] = std::ranges::unique(entities);
entities.erase(unique_end, range_end);
}
}
// Get geometry data
auto x_dofmap = mesh.geometry().dofmap();
std::span<const T> x_nodes = mesh.geometry().x();
// Get all vertex 'node' indices
mesh.topology_mutable()->create_connectivity(0, tdim);
mesh.topology_mutable()->create_connectivity(tdim, 0);
auto v_to_c = topology->connectivity(0, tdim);
assert(v_to_c);
auto c_to_v = topology->connectivity(tdim, 0);
assert(c_to_v);
std::vector<T> x_vertices(3 * vertices.size(), -1.0);
std::vector<std::int32_t> vertex_to_pos(v_to_c->num_nodes(), -1);
for (std::size_t i = 0; i < vertices.size(); ++i)
{
const std::int32_t v = vertices[i];
// Get first cell and find position
const std::int32_t c = v_to_c->links(v).front();
auto cell_vertices = c_to_v->links(c);
auto it = std::find(cell_vertices.begin(), cell_vertices.end(), v);
assert(it != cell_vertices.end());
const std::size_t local_pos = std::distance(cell_vertices.begin(), it);
auto dofs = md::submdspan(x_dofmap, c, md::full_extent);
for (std::size_t j = 0; j < 3; ++j)
x_vertices[j * vertices.size() + i] = x_nodes[3 * dofs[local_pos] + j];
vertex_to_pos[v] = i;
}
return {std::move(entities), std::move(x_vertices), std::move(vertex_to_pos)};
}
} // namespace impl
/// @brief Compute the indices of all exterior facets that are owned by
/// the caller.
///
/// An exterior facet (co-dimension 1) is one that is connected globally
/// to only one cell of co-dimension 0).
///
/// @note Collective.
///
/// @param[in] topology Mesh topology.
/// @param[in] facet_type_idx The index of the facet type in
/// Topology::entity_types(facet_dim)
/// @return Sorted list of owned facet indices that are exterior facets
/// of the mesh.
std::vector<std::int32_t> exterior_facet_indices(const Topology& topology,
int facet_type_idx);
/// @brief Compute the indices of all exterior facets that are owned by
/// the caller.
///
/// An exterior facet (co-dimension 1) is one that is connected globally
/// to only one cell of co-dimension 0).
///
/// @note Collective.
///
/// @param[in] topology Mesh topology.
/// @return Sorted list of owned facet indices that are exterior facets
/// of the mesh.
std::vector<std::int32_t> exterior_facet_indices(const Topology& topology);
/// @brief Signature for the cell partitioning function. Function that
/// implement this interface compute the destination rank for cells
/// currently on this rank.
///
/// @param[in] comm MPI Communicator.
/// @param[in] nparts Number of partitions.
/// @param[in] cell_types Cell types in the mesh.
/// @param[in] cells Lists of cells of each cell type. `cells[i]` is a
/// flattened row major 2D array of shape (num_cells, num_cell_vertices)
/// for `cell_types[i]` on this process, containing the global indices
/// for the cell vertices. Each cell can appear only once across all
/// processes. The cell vertex indices are not necessarily contiguous
/// globally, i.e. the maximum index across all processes can be greater
/// than the number of vertices. High-order 'nodes', e.g. mid-side
/// points, should not be included.
/// @return Destination ranks for each cell on this process.
/// @note Cells can have multiple destination ranks, when ghosted.
using CellPartitionFunction = std::function<graph::AdjacencyList<std::int32_t>(
MPI_Comm comm, int nparts, const std::vector<CellType>& cell_types,
const std::vector<std::span<const std::int64_t>>& cells)>;
/// @brief Function that reorders (locally) cells that
/// are owned by this process. It takes the local mesh dual graph as an
/// argument and returns a list whose `i`th entry is the new index of
/// cell `i`.
using CellReorderFunction = std::function<std::vector<std::int32_t>(
const graph::AdjacencyList<std::int32_t>&)>;
/// @brief Creates the default boundary vertices routine for a given reorder
/// function.
/// @param[in] reorder_fn A cell reorder funciton which will be applied to
/// reorder the cells.
/// @param[in] max_facet_to_cell_links Maximum number of cells a facet can be
/// connected to.
/// @return Boundary vertices function which can be passed to `create_mesh`.
/// TODO: offload to cpp?
inline auto
create_boundary_vertices_fn(const CellReorderFunction& reorder_fn,
std::optional<std::int32_t> max_facet_to_cell_links
= 2)
{
/// brief Function that computes the process boundary vertices of a mesh
/// during creation.
/// param[in] celltypes List of celltypes in mesh.
/// param[in] doflayouts List of DOF layouts in mesh.
/// param[in] ghost_owners List of ghost owner per cell per celltype.
/// param[out] cells List of cells per celltpye. Reorderd during call.
/// param[out] cells_v List of vertices (no higher order nodes) of cell per
/// celltype. Reordered during call.
/// param[out] original_idx Contains the permutation applied to the cells per
/// celltype.
/// return Boundary vertices (for all cell types).
return [&, max_facet_to_cell_links](
const std::vector<CellType>& celltypes,
const std::vector<fem::ElementDofLayout>& doflayouts,
const std::vector<std::vector<int>>& ghost_owners,
std::vector<std::vector<std::int64_t>>& cells,
std::vector<std::vector<std::int64_t>>& cells_v,
std::vector<std::vector<std::int64_t>>& original_idx)
-> std::vector<std::int64_t>
{
// Build local dual graph for owned cells to (i) get list of vertices
// on the process boundary and (ii) apply re-ordering to cells for
// locality
spdlog::info("Build local dual graphs, re-order cells, and compute process "
"boundary vertices.");
std::vector<std::pair<std::vector<std::int64_t>, int>> facets;
// Build lists of cells (by cell type) that excludes ghosts
std::vector<std::span<const std::int64_t>> cells1_v_local;
for (std::size_t i = 0; i < celltypes.size(); ++i)
{
int num_cell_vertices = mesh::num_cell_vertices(celltypes[i]);
std::size_t num_owned_cells
= cells_v[i].size() / num_cell_vertices - ghost_owners[i].size();
cells1_v_local.emplace_back(cells_v[i].data(),
num_owned_cells * num_cell_vertices);
// Build local dual graph for cell type
auto [graph, unmatched_facets, max_v, _facet_attached_cells]
= build_local_dual_graph(std::vector{celltypes[i]},
std::vector{cells1_v_local.back()},
max_facet_to_cell_links);
// Store unmatched_facets for current cell type
facets.emplace_back(std::move(unmatched_facets), max_v);
// Compute re-ordering of graph
const std::vector<std::int32_t> remap = reorder_fn(graph);
// Update 'original' indices
const std::vector<std::int64_t>& orig_idx = original_idx[i];
std::vector<std::int64_t> _original_idx(orig_idx.size());
std::copy_n(orig_idx.rbegin(), ghost_owners[i].size(),
_original_idx.rbegin());
{
for (std::size_t j = 0; j < remap.size(); ++j)
_original_idx[remap[j]] = orig_idx[j];
}
original_idx[i] = _original_idx;
// Reorder cells
impl::reorder_list(
std::span(cells_v[i].data(), remap.size() * num_cell_vertices),
remap);
impl::reorder_list(
std::span(cells[i].data(), remap.size() * doflayouts[i].num_dofs()),
remap);
}
if (facets.size() == 1) // Optimisation for single cell type
{
std::vector<std::int64_t>& vertices = facets.front().first;
// Remove duplicated vertex indices
std::ranges::sort(vertices);
auto [unique_end, range_end] = std::ranges::unique(vertices);
vertices.erase(unique_end, range_end);
// Remove -1 if it appears as first entity. This can happen in
// mixed topology meshes where '-1' is used to pad facet data when
// cells facets have differing numbers of vertices.
if (!vertices.empty() and vertices.front() == -1)
vertices.erase(vertices.begin());
return vertices;
}
else
{
// Pack 'unmatched' facets for all cell types into single array
// (facets0)
std::vector<std::int64_t> facets0;
facets0.reserve(std::accumulate(facets.begin(), facets.end(),
std::size_t(0), [](std::size_t x, auto& y)
{ return x + y.first.size(); }));
int max_v = std::ranges::max_element(facets, [](auto& a, auto& b)
{ return a.second < b.second; })
->second;
for (const auto& [v_data, num_v] : facets)
{
for (auto it = v_data.begin(); it != v_data.end(); it += num_v)
{
facets0.insert(facets0.end(), it, std::next(it, num_v));
facets0.insert(facets0.end(), max_v - num_v, -1);
}
}
// Compute row permutation
const std::vector<std::int32_t> perm = dolfinx::sort_by_perm(
std::span<const std::int64_t>(facets0), max_v);
// For facets in facets0 that appear only once, store the facet
// vertices
std::vector<std::int64_t> vertices;
// TODO: allocate memory for vertices
auto it = perm.begin();
while (it != perm.end())
{
// Find iterator to next facet different from f and trim any -1
// padding
std::span _f(facets0.data() + (*it) * max_v, max_v);
auto end = std::find_if(_f.rbegin(), _f.rend(),
[](auto a) { return a >= 0; });
auto f = _f.first(std::distance(end, _f.rend()));
auto it1 = std::find_if_not(
it, perm.end(),
[f, max_v, it0 = facets0.begin()](auto p) -> bool
{
return std::equal(f.begin(), f.end(), std::next(it0, p * max_v));
});
// If no repeated facet found, insert f vertices
if (std::distance(it, it1) == 1)
vertices.insert(vertices.end(), f.begin(), f.end());
else if (std::distance(it, it1) > 2)
throw std::runtime_error("More than two matching facets found.");
// Advance iterator
it = it1;
}
// Remove duplicate indices
std::ranges::sort(vertices);
auto [unique_end, range_end] = std::ranges::unique(vertices);
vertices.erase(unique_end, range_end);
return vertices;
}
};
}
/// @brief Extract topology from cell data, i.e. extract cell vertices.
/// @param[in] cell_type Cell shape.
/// @param[in] layout Layout of geometry 'degrees-of-freedom' on the
/// reference cell.
/// @param[in] cells List of 'nodes' for each cell using global indices.
/// The layout must be consistent with `layout`.
/// @return Cell topology. The global indices will, in general, have
/// 'gaps' due to mid-side and other higher-order nodes being removed
/// from the input `cell`.
std::vector<std::int64_t> extract_topology(CellType cell_type,
const fem::ElementDofLayout& layout,
std::span<const std::int64_t> cells);
/// @brief Compute greatest distance between any two vertices of the
/// mesh entities (`h`).
/// @param[in] mesh Mesh that the entities belong to.
/// @param[in] entities Indices (local to process) of entities to
/// compute `h` for.
/// @param[in] dim Topological dimension of the entities.
/// @returns Greatest distance between any two vertices, `h[i]`
/// corresponds to the entity `entities[i]`.
template <std::floating_point T>
std::vector<T> h(const Mesh<T>& mesh, std::span<const std::int32_t> entities,
int dim)
{
if (entities.empty())
return std::vector<T>();
if (dim == 0)
return std::vector<T>(entities.size(), 0);
// Get the geometry dofs for the vertices of each entity
const auto [vertex_xdofs, xdof_shape]
= entities_to_geometry(mesh, dim, entities, false);
// Get the geometry coordinate
std::span<const T> x = mesh.geometry().x();
// Function to compute the length of (p0 - p1)
auto delta_norm = [](auto&& p0, auto&& p1)
{
T norm = 0;
for (std::size_t i = 0; i < 3; ++i)
norm += (p0[i] - p1[i]) * (p0[i] - p1[i]);
return std::sqrt(norm);
};
// Compute greatest distance between any to vertices
assert(dim > 0);
std::vector<T> h(entities.size(), 0);
for (std::size_t e = 0; e < entities.size(); ++e)
{
// Get geometry 'dof' for each vertex of entity e
std::span<const std::int32_t> e_vertices(
vertex_xdofs.data() + e * xdof_shape[1], xdof_shape[1]);
// Compute maximum distance between any two vertices
for (std::size_t i = 0; i < e_vertices.size(); ++i)
{
std::span<const T, 3> p0(x.data() + 3 * e_vertices[i], 3);
for (std::size_t j = i + 1; j < e_vertices.size(); ++j)
{
std::span<const T, 3> p1(x.data() + 3 * e_vertices[j], 3);
h[e] = std::max(h[e], delta_norm(p0, p1));
}
}
}
return h;
}
/// @brief Compute normal to given cell (viewed as embedded in 3D).
/// @returns The entity normals. The shape is `(entities.size(), 3)` and
/// the storage is row-major.
template <std::floating_point T>
std::vector<T> cell_normals(const Mesh<T>& mesh, int dim,
std::span<const std::int32_t> entities)
{
if (entities.empty())
return std::vector<T>();
auto topology = mesh.topology();
assert(topology);
if (topology->cell_type() == CellType::prism and dim == 2)
{
throw std::runtime_error(
"Cell normal computation for prism cells not yet supported.");
}
const int gdim = mesh.geometry().dim();
const CellType type = cell_entity_type(topology->cell_type(), dim, 0);
// Find geometry nodes for topology entities
std::span<const T> x = mesh.geometry().x();
const auto [geometry_entities, eshape]
= entities_to_geometry(mesh, dim, entities, false);
std::vector<T> n(entities.size() * 3);
switch (type)
{
case CellType::interval:
{
if (gdim > 2)
throw std::invalid_argument("Interval cell normal undefined in 3D.");
for (std::size_t i = 0; i < entities.size(); ++i)
{
// Get the two vertices as points
std::array vertices{geometry_entities[i * eshape[1]],
geometry_entities[i * eshape[1] + 1]};
std::array p = {std::span<const T, 3>(x.data() + 3 * vertices[0], 3),
std::span<const T, 3>(x.data() + 3 * vertices[1], 3)};
// Define normal by rotating tangent counter-clockwise
std::array<T, 3> t;
std::ranges::transform(p[1], p[0], t.begin(),
[](auto x, auto y) { return x - y; });
T norm = std::sqrt(t[0] * t[0] + t[1] * t[1]);
std::span<T, 3> ni(n.data() + 3 * i, 3);
ni[0] = -t[1] / norm;
ni[1] = t[0] / norm;
ni[2] = 0.0;
}
return n;
}
case CellType::triangle:
{
for (std::size_t i = 0; i < entities.size(); ++i)
{
// Get the three vertices as points
std::array vertices = {geometry_entities[i * eshape[1] + 0],
geometry_entities[i * eshape[1] + 1],
geometry_entities[i * eshape[1] + 2]};
std::array p = {std::span<const T, 3>(x.data() + 3 * vertices[0], 3),
std::span<const T, 3>(x.data() + 3 * vertices[1], 3),
std::span<const T, 3>(x.data() + 3 * vertices[2], 3)};
// Compute (p1 - p0) and (p2 - p0)
std::array<T, 3> dp1, dp2;
std::ranges::transform(p[1], p[0], dp1.begin(),
[](auto x, auto y) { return x - y; });
std::ranges::transform(p[2], p[0], dp2.begin(),
[](auto x, auto y) { return x - y; });
// Define cell normal via cross product of first two edges
std::array<T, 3> ni = math::cross(dp1, dp2);
T norm = std::sqrt(ni[0] * ni[0] + ni[1] * ni[1] + ni[2] * ni[2]);
std::ranges::transform(ni, std::next(n.begin(), 3 * i),
[norm](auto x) { return x / norm; });
}
return n;
}
case CellType::quadrilateral:
{
// TODO: check
for (std::size_t i = 0; i < entities.size(); ++i)
{
// Get the three vertices as points
std::array vertices = {geometry_entities[i * eshape[1] + 0],
geometry_entities[i * eshape[1] + 1],
geometry_entities[i * eshape[1] + 2]};
std::array p = {std::span<const T, 3>(x.data() + 3 * vertices[0], 3),
std::span<const T, 3>(x.data() + 3 * vertices[1], 3),
std::span<const T, 3>(x.data() + 3 * vertices[2], 3)};
// Compute (p1 - p0) and (p2 - p0)
std::array<T, 3> dp1, dp2;
std::ranges::transform(p[1], p[0], dp1.begin(),
[](auto x, auto y) { return x - y; });
std::ranges::transform(p[2], p[0], dp2.begin(),
[](auto x, auto y) { return x - y; });
// Define cell normal via cross product of first two edges
std::array<T, 3> ni = math::cross(dp1, dp2);
T norm = std::sqrt(ni[0] * ni[0] + ni[1] * ni[1] + ni[2] * ni[2]);
std::ranges::transform(ni, std::next(n.begin(), 3 * i),
[norm](auto x) { return x / norm; });
}
return n;
}
default:
throw std::invalid_argument(
"cell_normal not supported for this cell type.");
}
}
/// @brief Compute the midpoints for mesh entities of a given dimension.
/// @returns The entity midpoints. The shape is `(entities.size(), 3)`
/// and the storage is row-major.
template <std::floating_point T>
std::vector<T> compute_midpoints(const Mesh<T>& mesh, int dim,
std::span<const std::int32_t> entities)
{
if (entities.empty())
return std::vector<T>();
std::span<const T> x = mesh.geometry().x();
// Build map from entity -> geometry dof
const auto [e_to_g, eshape]
= entities_to_geometry(mesh, dim, entities, false);
std::vector<T> x_mid(entities.size() * 3, 0);
for (std::size_t e = 0; e < entities.size(); ++e)
{
std::span<T, 3> p(x_mid.data() + 3 * e, 3);
std::span<const std::int32_t> rows(e_to_g.data() + e * eshape[1],
eshape[1]);
for (auto row : rows)
{
std::span<const T, 3> xg(x.data() + 3 * row, 3);
std::ranges::transform(p, xg, p.begin(),
[size = rows.size()](auto x, auto y)
{ return x + y / size; });
}
}
return x_mid;
}
namespace impl
{
/// @brief The coordinates for all 'vertices' in the mesh.
/// @param[in] mesh Mesh to compute the vertex coordinates for.
/// @return The vertex coordinates. The shape is `(3, num_vertices)` and
/// the `jth` column hold the coordinates of vertex `j`.
template <std::floating_point T>
std::pair<std::vector<T>, std::array<std::size_t, 2>>
compute_vertex_coords(const mesh::Mesh<T>& mesh)
{
auto topology = mesh.topology();
assert(topology);
const int tdim = topology->dim();
// Create entities and connectivities
// Get all vertex 'node' indices
const std::int32_t num_vertices = topology->index_map(0)->size_local()
+ topology->index_map(0)->num_ghosts();
std::vector<std::int32_t> vertex_to_node(num_vertices);
for (int cell_type_idx = 0,
num_cell_types = topology->entity_types(tdim).size();
cell_type_idx < num_cell_types; ++cell_type_idx)
{
auto x_dofmap = mesh.geometry().dofmap(cell_type_idx);
auto c_to_v = topology->connectivity({tdim, cell_type_idx}, {0, 0});
assert(c_to_v);
for (int c = 0; c < c_to_v->num_nodes(); ++c)
{
auto x_dofs = md::submdspan(x_dofmap, c, md::full_extent);
auto vertices = c_to_v->links(c);
for (std::size_t i = 0; i < vertices.size(); ++i)
vertex_to_node[vertices[i]] = x_dofs[i];
}
}
// Pack coordinates of vertices
std::span<const T> x_nodes = mesh.geometry().x();
std::vector<T> x_vertices(3 * vertex_to_node.size(), 0.0);
for (std::size_t i = 0; i < vertex_to_node.size(); ++i)
{
std::int32_t pos = 3 * vertex_to_node[i];
for (std::size_t j = 0; j < 3; ++j)
x_vertices[j * vertex_to_node.size() + i] = x_nodes[pos + j];
}
return {std::move(x_vertices), {3, vertex_to_node.size()}};
}
} // namespace impl
/// Requirements on function for geometry marking
template <typename Fn, typename T>
concept MarkerFn = std::is_invocable_r<
std::vector<std::int8_t>, Fn,
md::mdspan<const T,
md::extents<std::size_t, 3, md::dynamic_extent>>>::value;
/// @brief Compute indices of all mesh entities that evaluate to true
/// for the provided geometric marking function.
///
/// An entity is considered marked if the marker function evaluates to true
/// for all of its vertices.
///
/// @param[in] mesh Mesh to mark entities on.
/// @param[in] dim Topological dimension of the entities to be
/// considered.
/// @param[in] marker Marking function, returns `true` for a point that
/// is 'marked', and `false` otherwise.
/// @param[in] entity_type_idx The index of the entity type in
/// Topology::entity_types(dim)
/// @returns List of marked entity indices, including any ghost indices
/// (indices local to the process).
template <std::floating_point T, MarkerFn<T> U>
std::vector<std::int32_t> locate_entities(const Mesh<T>& mesh, int dim,
U marker, int entity_type_idx)
{
using cmdspan3x_t
= md::mdspan<const T, md::extents<std::size_t, 3, md::dynamic_extent>>;
// Run marker function on vertex coordinates
const auto [xdata, xshape] = impl::compute_vertex_coords(mesh);
cmdspan3x_t x(xdata.data(), xshape);
const std::vector<std::int8_t> marked = marker(x);
if (marked.size() != x.extent(1))
throw std::runtime_error("Length of array of markers is wrong.");
auto topology = mesh.topology();
assert(topology);
const int tdim = topology->dim();
mesh.topology_mutable()->create_entities(dim);
if (dim < tdim)
mesh.topology_mutable()->create_connectivity(dim, 0);
// Iterate over entities of dimension 'dim' to build vector of marked
// entities
auto e_to_v = topology->connectivity({dim, entity_type_idx}, {0, 0});
assert(e_to_v);
std::vector<std::int32_t> entities;
for (int e = 0; e < e_to_v->num_nodes(); ++e)
{
// Iterate over entity vertices
bool all_vertices_marked = true;
for (std::int32_t v : e_to_v->links(e))
{
if (!marked[v])
{
all_vertices_marked = false;
break;
}
}
if (all_vertices_marked)
entities.push_back(e);
}
return entities;
}
/// @brief Compute indices of all mesh entities that evaluate to true
/// for the provided geometric marking function.
///
/// An entity is considered marked if the marker function evaluates to true
/// for all of its vertices.
///
/// @param[in] mesh Mesh to mark entities on.
/// @param[in] dim Topological dimension of the entities to be
/// considered.
/// @param[in] marker Marking function, returns `true` for a point that
/// is 'marked', and `false` otherwise.
/// @returns List of marked entity indices, including any ghost indices
/// (indices local to the process).
template <std::floating_point T, MarkerFn<T> U>
std::vector<std::int32_t> locate_entities(const Mesh<T>& mesh, int dim,
U marker)
{
const int num_entity_types = mesh.topology()->entity_types(dim).size();
if (num_entity_types > 1)
{
throw std::runtime_error(
"Multiple entity types of this dimension. Specify entity type index");
}
return locate_entities(mesh, dim, marker, 0);
}
/// @brief Compute indices of all mesh entities that are attached to an
/// owned boundary facet and evaluate to true for the provided geometric
/// marking function.
///
/// An entity is considered marked if the marker function evaluates to
/// true for all of its vertices.
///
/// @note For vertices and edges, in parallel this function will not
/// necessarily mark all entities that are on the exterior boundary. For
/// example, it is possible for a process to have a vertex that lies on
/// the boundary without any of the attached facets being a boundary
/// facet. When used to find degrees-of-freedom, e.g. using
/// fem::locate_dofs_topological, the function that uses the data
/// returned by this function must typically perform some parallel
/// communication.
///
/// @param[in] mesh Mesh to mark entities on.
/// @param[in] dim Topological dimension of the entities to be
/// considered. Must be less than the topological dimension of the mesh.
/// @param[in] marker Marking function, returns `true` for a point that
/// is 'marked', and `false` otherwise.
/// @returns List of marked entity indices (indices local to the
/// process).
template <std::floating_point T, MarkerFn<T> U>
std::vector<std::int32_t> locate_entities_boundary(const Mesh<T>& mesh, int dim,
U marker)
{
// TODO Rewrite this function, it should be possible to simplify considerably
auto topology = mesh.topology();
assert(topology);
int tdim = topology->dim();
if (dim == tdim)
{
throw std::runtime_error(
"Cannot use mesh::locate_entities_boundary (boundary) for cells.");
}
// Compute list of boundary facets
mesh.topology_mutable()->create_entities(tdim - 1);
mesh.topology_mutable()->create_connectivity(tdim - 1, tdim);
std::vector<std::int32_t> boundary_facets = exterior_facet_indices(*topology);
using cmdspan3x_t
= md::mdspan<const T, md::extents<std::size_t, 3, md::dynamic_extent>>;
// Run marker function on the vertex coordinates
auto [facet_entities, xdata, vertex_to_pos]
= impl::compute_vertex_coords_boundary(mesh, dim, boundary_facets);
cmdspan3x_t x(xdata.data(), 3, xdata.size() / 3);
std::vector<std::int8_t> marked = marker(x);
if (marked.size() != x.extent(1))
throw std::runtime_error("Length of array of markers is wrong.");
// Loop over entities and check vertex markers
mesh.topology_mutable()->create_entities(dim);
auto e_to_v = topology->connectivity(dim, 0);
assert(e_to_v);
std::vector<std::int32_t> entities;
for (auto e : facet_entities)
{
// Iterate over entity vertices
bool all_vertices_marked = true;
for (auto v : e_to_v->links(e))
{
const std::int32_t pos = vertex_to_pos[v];
if (!marked[pos])
{
all_vertices_marked = false;
break;
}
}
// Mark facet with all vertices marked
if (all_vertices_marked)
entities.push_back(e);
}
return entities;
}
/// @brief Compute the geometry degrees of freedom associated with
/// the closure of a given set of cell entities.
///
/// @param[in] mesh The mesh.
/// @param[in] dim Topological dimension of the entities of interest.
/// @param[in] entities Entity indices (local to process).
/// @param[in] permute If `true`, permute the DOFs such that they are
/// consistent with the orientation of `dim`-dimensional mesh entities.
/// This requires `create_entity_permutations` to be called first.
/// @return Geometry DOFs associated with the closure of each entity in
/// `entities` and the shape. The shape is `(num_entities,
/// num_xdofs_per_entity)` and the storage is row-major. The index
/// `indices[i, j]` is the position in the geometry array of the `j`-th
/// vertex of the `entity[i]`.
///
/// @pre Mesh connectivities `dim -> mesh.topology().dim()` and
/// `mesh.topology().dim() -> dim` must have been computed. Otherwise an
/// exception is thrown.
template <std::floating_point T>
std::pair<std::vector<std::int32_t>, std::array<std::size_t, 2>>
entities_to_geometry(const Mesh<T>& mesh, int dim,
std::span<const std::int32_t> entities,
bool permute = false)
{
auto topology = mesh.topology();
assert(topology);
CellType cell_type = topology->cell_type();
if (cell_type == CellType::prism and dim == 2)
{
throw std::runtime_error(
"mesh::entities_to_geometry for prism cells not yet supported.");
}
const int tdim = topology->dim();
const Geometry<T>& geometry = mesh.geometry();
auto xdofs = geometry.dofmap();
// Get the DOF layout and the number of DOFs per entity
const fem::CoordinateElement<T>& coord_ele = geometry.cmap();
const fem::ElementDofLayout layout = coord_ele.create_dof_layout();
const std::size_t num_entity_dofs = layout.num_entity_closure_dofs(dim);
std::vector<std::int32_t> entity_xdofs;
entity_xdofs.reserve(entities.size() * num_entity_dofs);
std::array<std::size_t, 2> eshape{entities.size(), num_entity_dofs};
// Get the element's closure DOFs
const std::vector<std::vector<std::vector<int>>>& closure_dofs_all
= layout.entity_closure_dofs_all();
// Special case when dim == tdim (cells)
if (dim == tdim)
{
for (std::int32_t c : entities)
{
// Extract degrees of freedom
auto x_c = md::submdspan(xdofs, c, md::full_extent);
for (std::int32_t entity_dof : closure_dofs_all[tdim][0])
entity_xdofs.push_back(x_c[entity_dof]);
}
return {std::move(entity_xdofs), eshape};
}
assert(dim != tdim);
auto e_to_c = topology->connectivity(dim, tdim);
if (!e_to_c)
{
throw std::runtime_error(
"Entity-to-cell connectivity has not been computed. Missing dims "
+ std::to_string(dim) + "->" + std::to_string(tdim));
}
auto c_to_e = topology->connectivity(tdim, dim);
if (!c_to_e)
{
throw std::runtime_error(
"Cell-to-entity connectivity has not been computed. Missing dims "
+ std::to_string(tdim) + "->" + std::to_string(dim));
}
// Get the cell info, which is needed to permute the closure dofs
std::span<const std::uint32_t> cell_info;
if (permute)
cell_info = std::span(mesh.topology()->get_cell_permutation_info());
for (std::int32_t e : entities)
{
// Get a cell connected to the entity
assert(!e_to_c->links(e).empty());
std::int32_t c = e_to_c->links(e).front();
// Get the local index of the entity
std::span<const std::int32_t> cell_entities = c_to_e->links(c);
auto it = std::find(cell_entities.begin(), cell_entities.end(), e);
assert(it != cell_entities.end());
std::size_t local_entity = std::distance(cell_entities.begin(), it);
// Cell sub-entities must be permuted so that their local
// orientation agrees with their global orientation
std::vector<std::int32_t> closure_dofs(closure_dofs_all[dim][local_entity]);
if (permute)
{
mesh::CellType entity_type
= mesh::cell_entity_type(cell_type, dim, local_entity);
coord_ele.permute_subentity_closure(closure_dofs, cell_info[c],
entity_type, local_entity);
}
// Extract degrees of freedom
auto x_c = md::submdspan(xdofs, c, md::full_extent);
for (std::int32_t entity_dof : closure_dofs)
entity_xdofs.push_back(x_c[entity_dof]);
}
return {std::move(entity_xdofs), eshape};
}
/// @brief Create a function that computes destination rank for mesh
/// cells on this rank by applying the default graph partitioner to the
/// dual graph of the mesh.
/// @param[in] ghost_mode ghost mode of the created mesh, defaults to none
/// @param[in] partfn Partitioning function for distributing cells
/// across MPI ranks.
/// @param[in] max_facet_to_cell_links Bound on the number of cells a
/// facet needs to be connected to to be considered *matched* (not on boundary
/// for non-branching meshes).
/// @return Function that computes the destination ranks for each cell.
CellPartitionFunction create_cell_partitioner(
mesh::GhostMode ghost_mode = mesh::GhostMode::none,
const graph::partition_fn& partfn = &graph::partition_graph,
std::optional<std::int32_t> max_facet_to_cell_links = 2);
/// @brief Compute incident entities.
/// @param[in] topology The topology.
/// @param[in] entities List of indices of topological dimension `d0`.
/// @param[in] d0 Topological dimension.
/// @param[in] d1 Topological dimension.
/// @return List of entities of topological dimension `d1` that are
/// incident to entities in `entities` (topological dimension `d0`).
std::vector<std::int32_t>
compute_incident_entities(const Topology& topology,
std::span<const std::int32_t> entities, int d0,
int d1);
/// @brief Create a distributed mesh::Mesh from mesh data and using the
/// provided graph partitioning function for determining the parallel
/// distribution of the mesh.
///
/// The input cells and geometry data can be distributed across the
/// calling ranks, but must be not duplicated across ranks.
///
/// The function `partitioner` computes the parallel distribution, i.e.
/// the destination rank for each cell passed to the constructor. If
/// `partitioner` is not callable, i.e. it does not store a callable
/// function, no parallel re-distribution of cells is performed.
///
/// @note Collective.
///
/// @param[in] comm Communicator to build the mesh on.
/// @param[in] commt Communicator that the topology data (`cells`) is
/// distributed on. This should be `MPI_COMM_NULL` for ranks that should
/// not participate in computing the topology partitioning.
/// @param[in] cells Cells, grouped by cell type with `cells[i]` being
/// the cells of the same type. Cells are defined by their 'nodes'
/// (using global indices) following the Basix ordering, and for each
/// cell type concatenated to form a flattened list. For lowest-order
/// cells this will be just the cell vertices. For higher-order geometry
/// cells, other cell 'nodes' will be included. See io::cells for
/// examples of the Basix ordering.
/// @param[in] elements Coordinate elements for the cells, where
/// `elements[i]` is the coordinate element for the cells in `cells[i]`.
/// **The list of elements must be the same on all calling parallel
/// ranks.**
/// @param[in] commg Communicator for geometry.
/// @param[in] x Geometry data ('node' coordinates). Row-major storage.
/// The global index of the `i`th node (row) in `x` is taken as `i` plus
/// the parallel rank offset (on `comm`), where the offset is the sum of
/// `x` rows on all lower ranks than the caller.
/// @param[in] xshape Shape of the `x` data.
/// @param[in] partitioner Graph partitioner that computes the owning
/// rank for each cell in `cells`. If not callable, cells are not
/// redistributed.
/// @param[in] max_facet_to_cell_links Bound on the number of cells a
/// facet can be connected to.
/// @param[in] reorder_fn Function that reorders (locally) cells that
/// are owned by this process.
/// @return A mesh distributed on the communicator `comm`.
template <typename U>
Mesh<typename std::remove_reference_t<typename U::value_type>> create_mesh(
MPI_Comm comm, MPI_Comm commt,
std::vector<std::span<const std::int64_t>> cells,
const std::vector<fem::CoordinateElement<
typename std::remove_reference_t<typename U::value_type>>>& elements,
MPI_Comm commg, const U& x, std::array<std::size_t, 2> xshape,
const CellPartitionFunction& partitioner,
std::optional<std::int32_t> max_facet_to_cell_links,
const CellReorderFunction& reorder_fn = graph::reorder_gps)
{
assert(cells.size() == elements.size());
std::vector<CellType> celltypes;
std::ranges::transform(elements, std::back_inserter(celltypes),
[](auto& e) { return e.cell_shape(); });
std::vector<fem::ElementDofLayout> doflayouts;
std::ranges::transform(elements, std::back_inserter(doflayouts),
[](auto& e) { return e.create_dof_layout(); });
// Note: `extract_topology` extracts topology data, i.e. just the
// vertices. For P1 geometry this should just be the identity
// operator. For other elements the filtered lists may have 'gaps',
// i.e. the indices might not be contiguous.
//
// `extract_topology` could be skipped for 'P1 geometry' elements
std::int32_t num_cell_types = cells.size();
// -- Partition topology across ranks of comm
std::vector<std::vector<std::int64_t>> cells1(num_cell_types);
std::vector<std::vector<std::int64_t>> original_idx1(num_cell_types);
std::vector<std::vector<int>> ghost_owners(num_cell_types);
if (partitioner)
{
spdlog::info("Using partitioner with cell data ({} cell types)",
num_cell_types);
graph::AdjacencyList<std::int32_t> dest(0);
if (commt != MPI_COMM_NULL)
{
int size = dolfinx::MPI::size(comm);
std::vector<std::vector<std::int64_t>> t(num_cell_types);
std::vector<std::span<const std::int64_t>> tspan(num_cell_types);
for (std::int32_t i = 0; i < num_cell_types; ++i)
{
t[i] = extract_topology(celltypes[i], doflayouts[i], cells[i]);
tspan[i] = std::span(t[i]);
}
dest = partitioner(commt, size, celltypes, tspan);
}
std::int32_t cell_offset = 0;
for (std::int32_t i = 0; i < num_cell_types; ++i)
{
std::size_t num_cell_nodes = doflayouts[i].num_dofs();
assert(cells[i].size() % num_cell_nodes == 0);
std::size_t num_cells = cells[i].size() / num_cell_nodes;
// Extract destination AdjacencyList for this cell type
std::vector<std::int32_t> offsets_i(
std::next(dest.offsets().begin(), cell_offset),
std::next(dest.offsets().begin(), cell_offset + num_cells + 1));
std::vector<std::int32_t> data_i(
std::next(dest.array().begin(), offsets_i.front()),
std::next(dest.array().begin(), offsets_i.back()));
std::int32_t offset_0 = offsets_i.front();
std::ranges::for_each(offsets_i,
[&offset_0](std::int32_t& j) { j -= offset_0; });
graph::AdjacencyList<std::int32_t> dest_i(data_i, offsets_i);
cell_offset += num_cells;
// Distribute cells (topology, includes higher-order 'nodes') to
// destination rank
std::vector<int> src_ranks;
std::tie(cells1[i], src_ranks, original_idx1[i], ghost_owners[i])
= graph::build::distribute(comm, cells[i],
{num_cells, num_cell_nodes}, dest_i);
spdlog::debug("Got {} cells from distribution", cells1[i].size());
}
}
else
{
// No partitioning, construct a global index
std::int64_t num_owned = 0;
for (std::int32_t i = 0; i < num_cell_types; ++i)
{
cells1[i] = std::vector<std::int64_t>(cells[i].begin(), cells[i].end());
std::int32_t num_cell_nodes = doflayouts[i].num_dofs();
assert(cells1[i].size() % num_cell_nodes == 0);
original_idx1[i].resize(cells1[i].size() / num_cell_nodes);
num_owned += original_idx1[i].size();
}
// Add on global offset
std::int64_t global_offset = 0;
MPI_Exscan(&num_owned, &global_offset, 1, MPI_INT64_T, MPI_SUM, comm);
for (std::int32_t i = 0; i < num_cell_types; ++i)
{
std::iota(original_idx1[i].begin(), original_idx1[i].end(),
global_offset);
global_offset += original_idx1[i].size();
}
}
// Extract cell 'topology', i.e. extract the vertices for each cell
// and discard any 'higher-order' nodes
std::vector<std::vector<std::int64_t>> cells1_v(num_cell_types);
for (std::int32_t i = 0; i < num_cell_types; ++i)
{
cells1_v[i] = extract_topology(celltypes[i], doflayouts[i], cells1[i]);
spdlog::info("Extract basic topology: {}->{}", cells1[i].size(),
cells1_v[i].size());
}
auto boundary_v_fn
= create_boundary_vertices_fn(reorder_fn, max_facet_to_cell_links);
const std::vector<std::int64_t> boundary_v = boundary_v_fn(
celltypes, doflayouts, ghost_owners, cells1, cells1_v, original_idx1);
spdlog::debug("Got {} boundary vertices", boundary_v.size());
// Create Topology
std::vector<std::span<const std::int64_t>> cells1_v_span;
std::ranges::transform(cells1_v, std::back_inserter(cells1_v_span),
[](auto& c) { return std::span(c); });
std::vector<std::span<const std::int64_t>> original_idx1_span;
std::ranges::transform(original_idx1, std::back_inserter(original_idx1_span),
[](auto& c) { return std::span(c); });
std::vector<std::span<const int>> ghost_owners_span;
std::ranges::transform(ghost_owners, std::back_inserter(ghost_owners_span),
[](auto& c) { return std::span(c); });
Topology topology
= create_topology(comm, celltypes, cells1_v_span, original_idx1_span,
ghost_owners_span, boundary_v);
// Create connectivities required higher-order geometries for creating
// a Geometry object
for (int i = 0; i < num_cell_types; ++i)
{
for (int e = 1; e < topology.dim(); ++e)
{
if (doflayouts[i].num_entity_dofs(e) > 0)
topology.create_entities(e);
}
if (elements[i].needs_dof_permutations())
topology.create_entity_permutations();
}
// Build list of unique (global) node indices from cells1 and
// distribute coordinate data
std::vector<std::int64_t> nodes1, nodes2;
for (std::vector<std::int64_t>& c : cells1)
nodes1.insert(nodes1.end(), c.begin(), c.end());
for (std::vector<std::int64_t>& c : cells1)
nodes2.insert(nodes2.end(), c.begin(), c.end());
dolfinx::radix_sort(nodes1);
auto [unique_end, range_end] = std::ranges::unique(nodes1);
nodes1.erase(unique_end, range_end);
std::vector coords
= dolfinx::MPI::distribute_data(comm, nodes1, commg, x, xshape[1]);
// Create geometry object
Geometry geometry
= create_geometry(topology, elements, nodes1, nodes2, coords, xshape[1]);
return Mesh(comm, std::make_shared<Topology>(std::move(topology)),
std::move(geometry));
}
/// @brief Create a distributed mesh with a single cell type from mesh
/// data and using a provided graph partitioning function for
/// determining the parallel distribution of the mesh.
///
/// From mesh input data that is distributed across processes, a
/// distributed mesh::Mesh is created. If the partitioning function is
/// not callable, i.e. it does not store a callable function, no
/// re-distribution of cells is done.
///
/// This constructor provides a simplified interface to the more general
/// ::create_mesh constructor, which supports meshes with more than one
/// cell type.
///
/// @param[in] comm Communicator to build the mesh on.
/// @param[in] commt Communicator that the topology data (`cells`) is
/// distributed on. This should be `MPI_COMM_NULL` for ranks that should
/// not participate in computing the topology partitioning.
/// @param[in] cells Cells on the calling process. Each cell (node in
/// the `AdjacencyList`) is defined by its 'nodes' (using global
/// indices) following the Basix ordering. For lowest order cells this
/// will be just the cell vertices. For higher-order cells, other cells
/// 'nodes' will be included. See dolfinx::io::cells for examples of the
/// Basix ordering.
/// @param[in] element Coordinate element for the cells.
/// @param[in] commg Communicator for geometry.
/// @param[in] x Geometry data ('node' coordinates). Row-major storage.
/// The global index of the `i`th node (row) in `x` is taken as `i` plus
/// the process offset on`comm`, The offset is the sum of `x` rows on
/// all processed with a lower rank than the caller.
/// @param[in] xshape Shape of the `x` data.
/// @param[in] partitioner Graph partitioner that computes the owning
/// rank for each cell. If not callable, cells are not redistributed.
/// @param[in] max_facet_to_cell_links Bound on the number of cells a
/// facet can be connected to.
/// @param[in] reorder_fn Function that reorders (locally) cells that
/// are owned by this process.
/// @return A mesh distributed on the communicator `comm`.
template <typename U>
Mesh<typename std::remove_reference_t<typename U::value_type>> create_mesh(
MPI_Comm comm, MPI_Comm commt, std::span<const std::int64_t> cells,
const fem::CoordinateElement<
typename std::remove_reference_t<typename U::value_type>>& element,
MPI_Comm commg, const U& x, std::array<std::size_t, 2> xshape,
const CellPartitionFunction& partitioner,
std::optional<std::int32_t> max_facet_to_cell_links = 2,
const CellReorderFunction& reorder_fn = graph::reorder_gps)
{
return create_mesh(comm, commt, std::vector{cells}, std::vector{element},
commg, x, xshape, partitioner, max_facet_to_cell_links,
reorder_fn);
}
/// @brief Create a distributed mesh from mesh data using the default
/// graph partitioner to determine the parallel distribution of the
/// mesh.
///
/// This function takes mesh input data that is distributed across
/// processes and creates a mesh::Mesh, with the mesh cell distribution
/// determined by the default cell partitioner. The default partitioner
/// is based on graph partitioning.
///
/// @param[in] comm MPI communicator to build the mesh on.
/// @param[in] cells Cells on the calling process. See ::create_mesh for
/// a detailed description.
/// @param[in] elements Coordinate elements for the cells.
/// @param[in] x Geometry data ('node' coordinates). See ::create_mesh
/// for a detailed description.
/// @param[in] xshape Shape of `x`. It should be `(num_points, gdim)`.
/// @param[in] ghost_mode Required type of cell ghosting/overlap.
/// @param[in] max_facet_to_cell_links Bound on the number of cells a
/// facet can be connected to.
/// @return A mesh distributed on the communicator `comm`.
template <typename U>
Mesh<typename std::remove_reference_t<typename U::value_type>>
create_mesh(MPI_Comm comm, std::span<const std::int64_t> cells,
const fem::CoordinateElement<
std::remove_reference_t<typename U::value_type>>& elements,
const U& x, std::array<std::size_t, 2> xshape, GhostMode ghost_mode,
std::optional<std::int32_t> max_facet_to_cell_links = 2)
{
if (dolfinx::MPI::size(comm) == 1)
{
return create_mesh(comm, comm, std::vector{cells}, std::vector{elements},
comm, x, xshape, nullptr, max_facet_to_cell_links);
}
else
{
return create_mesh(comm, comm, std::vector{cells}, std::vector{elements},
comm, x, xshape, create_cell_partitioner(ghost_mode),
max_facet_to_cell_links);
}
}
/// @brief Create a sub-geometry from a mesh and a subset of mesh entities to
/// be included.
///
/// A sub-geometry is simply a mesh::Geometry object containing only the
/// geometric information for the subset of entities. The entities may
/// differ in topological dimension from the original mesh.
///
/// @param[in] mesh The full mesh.
/// @param[in] dim Topological dimension of the sub-topology.
/// @param[in] subentity_to_entity Map from sub-topology entity to the
/// entity in the parent topology.
/// @return A sub-geometry and a map from sub-geometry coordinate
/// degree-of-freedom to the coordinate degree-of-freedom in `geometry`.
template <std::floating_point T>
std::pair<Geometry<T>, std::vector<int32_t>>
create_subgeometry(const Mesh<T>& mesh, int dim,
std::span<const std::int32_t> subentity_to_entity)
{
const Geometry<T>& geometry = mesh.geometry();
// Get the geometry dofs in the sub-geometry based on the entities in
// sub-geometry
const fem::ElementDofLayout layout = geometry.cmap().create_dof_layout();
const std::vector<std::int32_t> x_indices
= entities_to_geometry(mesh, dim, subentity_to_entity, true).first;
std::vector<std::int32_t> sub_x_dofs = x_indices;
std::ranges::sort(sub_x_dofs);
auto [unique_end, range_end] = std::ranges::unique(sub_x_dofs);
sub_x_dofs.erase(unique_end, range_end);
// Get the sub-geometry dofs owned by this process
auto x_index_map = geometry.index_map();
assert(x_index_map);
std::shared_ptr<common::IndexMap> sub_x_dof_index_map;
std::vector<std::int32_t> subx_to_x_dofmap;
{
auto [map, new_to_old] = common::create_sub_index_map(
*x_index_map, sub_x_dofs, common::IndexMapOrder::any, true);
sub_x_dof_index_map = std::make_shared<common::IndexMap>(std::move(map));
subx_to_x_dofmap = std::move(new_to_old);
}
// Create sub-geometry coordinates
std::span<const T> x = geometry.x();
std::int32_t sub_num_x_dofs = subx_to_x_dofmap.size();
std::vector<T> sub_x(3 * sub_num_x_dofs);
for (std::int32_t i = 0; i < sub_num_x_dofs; ++i)
{
std::copy_n(std::next(x.begin(), 3 * subx_to_x_dofmap[i]), 3,
std::next(sub_x.begin(), 3 * i));
}
// Create geometry to sub-geometry map
std::vector<std::int32_t> x_to_subx_dof_map(
x_index_map->size_local() + x_index_map->num_ghosts(), -1);
for (std::size_t i = 0; i < subx_to_x_dofmap.size(); ++i)
x_to_subx_dof_map[subx_to_x_dofmap[i]] = i;
// Create sub-geometry dofmap
std::vector<std::int32_t> sub_x_dofmap;
sub_x_dofmap.reserve(x_indices.size());
std::ranges::transform(x_indices, std::back_inserter(sub_x_dofmap),
[&x_to_subx_dof_map](auto x_dof)
{
assert(x_to_subx_dof_map[x_dof] != -1);
return x_to_subx_dof_map[x_dof];
});
// Sub-geometry coordinate element
CellType sub_xcell = cell_entity_type(geometry.cmap().cell_shape(), dim, 0);
// Special handling of point meshes, as they only support constant
// basis functions
int degree = (sub_xcell == CellType::point) ? 0 : geometry.cmap().degree();
fem::CoordinateElement<T> sub_cmap(sub_xcell, degree,
geometry.cmap().variant());
// Sub-geometry input_global_indices
const std::vector<std::int64_t>& igi = geometry.input_global_indices();
std::vector<std::int64_t> sub_igi;
sub_igi.reserve(subx_to_x_dofmap.size());
std::ranges::transform(subx_to_x_dofmap, std::back_inserter(sub_igi),
[&igi](auto sub_x_dof) { return igi[sub_x_dof]; });
// Create geometry
return {Geometry(
sub_x_dof_index_map,
std::vector<std::vector<std::int32_t>>{std::move(sub_x_dofmap)},
{sub_cmap}, std::move(sub_x), geometry.dim(), std::move(sub_igi)),
std::move(subx_to_x_dofmap)};
}
/// @brief Create a new mesh consisting of a subset of entities in a
/// mesh.
/// @param[in] mesh The mesh.
/// @param[in] dim Dimension entities in `mesh` that will be cells in
/// the sub-mesh.
/// @param[in] entities Indices of entities in `mesh` to include in the
/// sub-mesh.
/// @return A new mesh, and maps from the new mesh entities, vertices,
/// and geometry to the input mesh entities, vertices, and geometry.
template <std::floating_point T>
std::tuple<Mesh<T>, EntityMap, EntityMap, std::vector<std::int32_t>>
create_submesh(const Mesh<T>& mesh, int dim,
std::span<const std::int32_t> entities)
{
// Create sub-topology
mesh.topology_mutable()->create_connectivity(dim, 0);
auto [topology, subentity_to_entity, subvertex_to_vertex]
= mesh::create_subtopology(*mesh.topology(), dim, entities);
// Create sub-geometry
const int tdim = mesh.topology()->dim();
mesh.topology_mutable()->create_entities(dim);
mesh.topology_mutable()->create_connectivity(dim, tdim);
mesh.topology_mutable()->create_connectivity(tdim, dim);
mesh.topology_mutable()->create_entity_permutations();
auto [geometry, subx_to_x_dofmap]
= mesh::create_subgeometry(mesh, dim, subentity_to_entity);
Mesh<T> submesh
= Mesh(mesh.comm(), std::make_shared<Topology>(std::move(topology)),
std::move(geometry));
EntityMap entity_map(mesh.topology(), submesh.topology(), dim,
subentity_to_entity);
EntityMap vertex_map(mesh.topology(), submesh.topology(), 0,
subvertex_to_vertex);
return {std::move(submesh), std::move(entity_map), std::move(vertex_map),
std::move(subx_to_x_dofmap)};
}
} // namespace dolfinx::mesh
|