File: uniform.cpp

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (307 lines) | stat: -rw-r--r-- 11,985 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/Scatterer.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/utils.h>
#include <iterator>
#include <vector>

#include "uniform.h"

using namespace dolfinx;

template <typename T>
mesh::Mesh<T>
refinement::uniform_refine(const mesh::Mesh<T>& mesh,
                           const mesh::CellPartitionFunction& partitioner)
{
  // Requires edges (and facets for some 3D meshes) to be built already
  auto topology = mesh.topology();
  int tdim = topology->dim();
  if (tdim < 2)
    throw std::runtime_error("Uniform refinement only for 2D and 3D meshes");

  spdlog::info("Topology dim = {}", tdim);

  // Collect up entity types on each dimension
  std::vector<std::vector<mesh::CellType>> entity_types;
  entity_types.reserve(tdim + 1);
  for (int i = 0; i < tdim + 1; ++i)
    entity_types.push_back(topology->entity_types(i));
  const std::vector<mesh::CellType>& cell_entity_types = entity_types.back();

  // Get index maps for vertices and edges and create maps for new vertices
  // New vertices are created for each old vertex, and also at the centre of
  // each edge, each quadrilateral facet, and each hexahedral cell.
  std::vector<std::vector<std::int64_t>> new_v;
  std::vector<std::shared_ptr<const common::IndexMap>> index_maps;

  // Indices for vertices and edges on dim 0 and dim 1.
  std::vector<int> e_index{0, 0};

  // Check for quadrilateral faces and get index, if any.
  if (auto it = std::find(entity_types[2].begin(), entity_types[2].end(),
                          mesh::CellType::quadrilateral);
      it != entity_types[2].end())
    e_index.push_back(std::distance(entity_types[2].begin(), it));

  if (tdim == 3)
  {
    // In 3D, check for hexahedral cells, and get index, if any.
    if (auto it = std::find(cell_entity_types.begin(), cell_entity_types.end(),
                            mesh::CellType::hexahedron);
        it != entity_types[3].end())
      e_index.push_back(std::distance(cell_entity_types.begin(), it));
  }

  // Add up all local vertices, edges, quad facets and hex cells.
  std::int64_t nlocal = 0;
  for (std::size_t dim = 0; dim < e_index.size(); ++dim)
  {
    if (topology->index_maps(dim).empty())
      throw std::runtime_error(
          "Missing entities of dimension " + std::to_string(dim)
          + ", need to call create_entities(" + std::to_string(dim) + ")");
    index_maps.push_back(topology->index_maps(dim)[e_index[dim]]);
    new_v.push_back(std::vector<std::int64_t>(
        index_maps.back()->size_local() + index_maps.back()->num_ghosts()));
    nlocal += index_maps.back()->size_local();
  }

  // Get current geometry and put into new array for vertices
  std::vector<std::int32_t> vertex_to_x(index_maps[0]->size_local()
                                        + index_maps[0]->num_ghosts());

  // Iterate over cells for each cell type
  for (int j = 0; j < static_cast<int>(cell_entity_types.size()); ++j)
  {
    // Get geometry for each cell type
    auto x_dofmap = mesh.geometry().dofmap(j);
    auto c_to_v = topology->connectivity({tdim, j}, {0, 0});
    auto dof_layout = mesh.geometry().cmaps().at(j).create_dof_layout();
    std::vector<int> entity_dofs(dof_layout.num_dofs());
    for (int k = 0; k < dof_layout.num_dofs(); ++k)
      entity_dofs[k] = dof_layout.entity_dofs(0, k).front();

    // Iterate over cells of this type
    auto im = topology->index_maps(tdim)[j];
    assert(im);
    for (std::int32_t c = 0; c < im->size_local() + im->num_ghosts(); ++c)
    {
      auto vertices = c_to_v->links(c);
      for (std::size_t i = 0; i < vertices.size(); ++i)
        vertex_to_x[vertices[i]] = x_dofmap(c, entity_dofs[i]);
    }
  }

  // Compute offset for vertices related to each entity type
  std::vector<std::int32_t> entity_offsets(index_maps.size() + 1, 0);
  for (std::size_t i = 0; i < index_maps.size(); ++i)
    entity_offsets[i + 1] = entity_offsets[i] + index_maps[i]->size_local();

  // Copy existing vertices
  std::vector<T> new_x(nlocal * 3);
  std::span x_g = mesh.geometry().x();
  for (int i = 0; i < index_maps[0]->size_local(); ++i)
    for (int j = 0; j < 3; ++j)
      new_x[i * 3 + j] = x_g[vertex_to_x[i] * 3 + j];

  // Create vertices on edges, quad facet and hex cell centres
  for (int j = 1; j < static_cast<int>(index_maps.size()); ++j)
  {
    auto e_to_v = topology->connectivity({j, e_index[j]}, {0, 0});
    std::int32_t w_off = entity_offsets[j];
    std::int32_t num_entities = index_maps[j]->size_local();
    assert(num_entities == entity_offsets[j + 1] - entity_offsets[j]);

    for (std::int32_t w = 0; w < num_entities; ++w)
    {
      auto vt = e_to_v->links(w);
      std::size_t nv_ent = vt.size();
      std::array<T, 3> v{0, 0, 0};
      for (std::size_t i = 0; i < nv_ent; ++i)
      {
        for (int k = 0; k < 3; ++k)
          v[k] += x_g[3 * vertex_to_x[vt[i]] + k];
      }
      // Get the (linear) center of the entity.
      // TODO: change for higher-order geometry to use map.
      for (int k = 0; k < 3; ++k)
        new_x[(w + w_off) * 3 + k] = v[k] / static_cast<T>(nv_ent);
    }
  }

  // Get this process global offset and range
  std::int64_t nscan;
  MPI_Scan(&nlocal, &nscan, 1, MPI_INT64_T, MPI_SUM, mesh.comm());
  std::array<std::int64_t, 2> local_range = {nscan - nlocal, nscan};

  // Compute indices for new vertices and share across processes
  for (std::size_t j = 0; j < index_maps.size(); ++j)
  {
    std::int32_t num_entities = index_maps[j]->size_local();
    assert(num_entities == entity_offsets[j + 1] - entity_offsets[j]);
    std::iota(new_v[j].begin(), std::next(new_v[j].begin(), num_entities),
              local_range[0] + entity_offsets[j]);

    common::Scatterer sc(*index_maps[j], 1);
    std::vector<std::int64_t> send_buffer(sc.local_indices().size());
    {
      auto& idx = sc.local_indices();
      for (std::size_t i = 0; i < idx.size(); ++i)
        send_buffer[i] = new_v[j][idx[i]];
    }
    std::vector<std::int64_t> recv_buffer(sc.remote_indices().size());
    MPI_Request request = MPI_REQUEST_NULL;
    sc.scatter_fwd_begin(send_buffer.data(), recv_buffer.data(), request);
    sc.scatter_end(request);
    {
      std::span ghosts(std::next(new_v[j].begin(), num_entities),
                       new_v[j].end());
      auto& idx = sc.remote_indices();
      for (std::size_t i = 0; i < idx.size(); ++i)
        ghosts[idx[i]] = recv_buffer[i];
    }
  }

  // Create new topology
  std::vector<std::vector<std::int64_t>> mixed_topology(
      cell_entity_types.size());

  // Find index of tets in topology list, if any
  int ktet = -1;
  auto it = std::find(cell_entity_types.begin(), cell_entity_types.end(),
                      mesh::CellType::tetrahedron);
  if (it != cell_entity_types.end())
    ktet = std::distance(cell_entity_types.begin(), it);
  // Topology for tetrahedra which arise from pyramid subdivision
  std::array<int, 16> pyr_to_tet_list
      = {5, 13, 7, 9, 6, 13, 11, 7, 10, 13, 12, 11, 8, 13, 9, 12};

  std::vector<int> refined_cell_list;
  for (int k = 0; k < static_cast<int>(cell_entity_types.size()); ++k)
  {
    // Reserve an estimate of space for the topology of each type
    mixed_topology[k].reserve(mesh.topology()->index_maps(tdim)[k]->size_local()
                              * 8 * 6);

    // Select correct subdivision for celltype
    // Hex -> 8 hex, Prism -> 8 prism, Tet -> 8 tet, Pyr -> 5 pyr + 4 tet
    // Each `refined_cell_list` is the topology for cells of the same type,
    // flattened, hence 64 entries for hex, 32 for tet, 48 for prism, 25 for
    // pyramid. Additionally for pyramid there are 16 tetrahedron entries (see
    // above).

    switch (cell_entity_types[k])
    {
    case mesh::CellType::hexahedron:
      spdlog::debug("Hex subdivision [{}]", k);
      refined_cell_list
          = {0, 9,  8,  20, 10, 22, 21, 26, 1, 11, 8,  20, 12, 23, 21, 26,
             2, 13, 9,  20, 14, 24, 22, 26, 3, 13, 11, 20, 15, 24, 23, 26,
             4, 16, 10, 21, 17, 25, 22, 26, 5, 16, 12, 21, 18, 25, 23, 26,
             6, 17, 14, 22, 19, 25, 24, 26, 7, 18, 15, 23, 19, 25, 24, 26};
      break;

    case mesh::CellType::tetrahedron:
      spdlog::debug("Tet subdivision [{}]", k);
      refined_cell_list = {0, 7, 8, 9, 1, 5, 6, 9, 2, 4, 6, 8, 3, 4, 5, 7,
                           9, 4, 6, 8, 9, 4, 8, 7, 9, 4, 7, 5, 9, 4, 5, 6};
      break;

    case mesh::CellType::prism:
      spdlog::debug("Prism subdivision [{}]", k);
      refined_cell_list
          = {0,  6,  7,  8,  15, 16, 6,  1,  9,  15, 10, 17, 7,  9,  2,  16,
             17, 11, 6,  9,  7,  15, 17, 16, 15, 17, 16, 12, 14, 13, 8,  15,
             16, 3,  12, 13, 11, 17, 16, 5,  14, 13, 10, 15, 17, 4,  12, 14};
      break;

    case mesh::CellType::pyramid:
      spdlog::debug("Pyramid subdivision [{}]", k);
      refined_cell_list = {0,  5,  6, 13, 7,  1,  8,  5, 13, 9,  3,  10, 8,
                           13, 12, 2, 6,  10, 13, 11, 7, 9,  11, 12, 4};
      if (ktet == -1)
        throw std::runtime_error("Cannot refine mesh with pyramids and no "
                                 "tetrahedra.");
      break;

    case mesh::CellType::triangle:
      spdlog::debug("Triangle subdivision [{}]", k);
      refined_cell_list = {0, 4, 5, 1, 5, 3, 2, 3, 4, 3, 4, 5};
      break;

    case mesh::CellType::quadrilateral:
      spdlog::debug("Quad subdivision [{}]", k);
      refined_cell_list = {0, 4, 5, 8, 1, 6, 4, 8, 2, 7, 5, 8, 3, 7, 6, 8};
      break;

    default:
      throw std::runtime_error("Unhandled cell type");
    }

    auto c_to_v = topology->connectivity({tdim, k}, {0, 0});
    auto c_to_e = topology->connectivity({tdim, k}, {1, 0});

    for (int c = 0; c < topology->index_maps(tdim)[k]->size_local(); ++c)
    {
      // Cell topology defined through its globally numbered vertices
      std::vector<std::int64_t> entities;
      // Extract new global vertex number for existing vertices
      for (std::int32_t i : c_to_v->links(c))
        entities.push_back(new_v[0][i]);
      // Indices for vertices inserted on edges
      for (std::int32_t i : c_to_e->links(c))
        entities.push_back(new_v[1][i]);
      if (e_index.size() > 2)
      {
        if (tdim == 3)
        {
          // Add any vertices on quadrilateral facets (3D mesh)
          auto conn = topology->connectivity({3, k}, {2, e_index[2]});
          if (conn)
          {
            for (std::int32_t i :
                 topology->connectivity({3, k}, {2, e_index[2]})->links(c))
              entities.push_back(new_v[2][i]);
          }
        }
        // Add vertices for quadrilateral cells (2D mesh)
        else if (cell_entity_types[k] == mesh::CellType::quadrilateral)
          entities.push_back(new_v[2][c]);
      }

      // Add vertices for hex cell centres
      if (e_index.size() > 3
          and cell_entity_types[k] == mesh::CellType::hexahedron)
        entities.push_back(new_v[3][c]);

      for (int i : refined_cell_list)
        mixed_topology[k].push_back(entities[i]);

      if (cell_entity_types[k] == mesh::CellType::pyramid)
      {
        for (int i : pyr_to_tet_list)
          mixed_topology[ktet].push_back(entities[i]);
      }
    }
  }

  spdlog::debug("Create new mesh");
  std::vector<std::span<const std::int64_t>> topo_span(mixed_topology.begin(),
                                                       mixed_topology.end());
  mesh::Mesh new_mesh = mesh::create_mesh(
      mesh.comm(), mesh.comm(), topo_span, mesh.geometry().cmaps(), mesh.comm(),
      new_x, {new_x.size() / 3, 3}, partitioner, 2);

  return new_mesh;
}

/// @cond Explicit instatiation for float and double
template mesh::Mesh<double>
refinement::uniform_refine(const mesh::Mesh<double>& mesh,
                           const mesh::CellPartitionFunction&);
template mesh::Mesh<float>
refinement::uniform_refine(const mesh::Mesh<float>& mesh,
                           const mesh::CellPartitionFunction&);
/// @endcond