1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/Scatterer.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/utils.h>
#include <iterator>
#include <vector>
#include "uniform.h"
using namespace dolfinx;
template <typename T>
mesh::Mesh<T>
refinement::uniform_refine(const mesh::Mesh<T>& mesh,
const mesh::CellPartitionFunction& partitioner)
{
// Requires edges (and facets for some 3D meshes) to be built already
auto topology = mesh.topology();
int tdim = topology->dim();
if (tdim < 2)
throw std::runtime_error("Uniform refinement only for 2D and 3D meshes");
spdlog::info("Topology dim = {}", tdim);
// Collect up entity types on each dimension
std::vector<std::vector<mesh::CellType>> entity_types;
entity_types.reserve(tdim + 1);
for (int i = 0; i < tdim + 1; ++i)
entity_types.push_back(topology->entity_types(i));
const std::vector<mesh::CellType>& cell_entity_types = entity_types.back();
// Get index maps for vertices and edges and create maps for new vertices
// New vertices are created for each old vertex, and also at the centre of
// each edge, each quadrilateral facet, and each hexahedral cell.
std::vector<std::vector<std::int64_t>> new_v;
std::vector<std::shared_ptr<const common::IndexMap>> index_maps;
// Indices for vertices and edges on dim 0 and dim 1.
std::vector<int> e_index{0, 0};
// Check for quadrilateral faces and get index, if any.
if (auto it = std::find(entity_types[2].begin(), entity_types[2].end(),
mesh::CellType::quadrilateral);
it != entity_types[2].end())
e_index.push_back(std::distance(entity_types[2].begin(), it));
if (tdim == 3)
{
// In 3D, check for hexahedral cells, and get index, if any.
if (auto it = std::find(cell_entity_types.begin(), cell_entity_types.end(),
mesh::CellType::hexahedron);
it != entity_types[3].end())
e_index.push_back(std::distance(cell_entity_types.begin(), it));
}
// Add up all local vertices, edges, quad facets and hex cells.
std::int64_t nlocal = 0;
for (std::size_t dim = 0; dim < e_index.size(); ++dim)
{
if (topology->index_maps(dim).empty())
throw std::runtime_error(
"Missing entities of dimension " + std::to_string(dim)
+ ", need to call create_entities(" + std::to_string(dim) + ")");
index_maps.push_back(topology->index_maps(dim)[e_index[dim]]);
new_v.push_back(std::vector<std::int64_t>(
index_maps.back()->size_local() + index_maps.back()->num_ghosts()));
nlocal += index_maps.back()->size_local();
}
// Get current geometry and put into new array for vertices
std::vector<std::int32_t> vertex_to_x(index_maps[0]->size_local()
+ index_maps[0]->num_ghosts());
// Iterate over cells for each cell type
for (int j = 0; j < static_cast<int>(cell_entity_types.size()); ++j)
{
// Get geometry for each cell type
auto x_dofmap = mesh.geometry().dofmap(j);
auto c_to_v = topology->connectivity({tdim, j}, {0, 0});
auto dof_layout = mesh.geometry().cmaps().at(j).create_dof_layout();
std::vector<int> entity_dofs(dof_layout.num_dofs());
for (int k = 0; k < dof_layout.num_dofs(); ++k)
entity_dofs[k] = dof_layout.entity_dofs(0, k).front();
// Iterate over cells of this type
auto im = topology->index_maps(tdim)[j];
assert(im);
for (std::int32_t c = 0; c < im->size_local() + im->num_ghosts(); ++c)
{
auto vertices = c_to_v->links(c);
for (std::size_t i = 0; i < vertices.size(); ++i)
vertex_to_x[vertices[i]] = x_dofmap(c, entity_dofs[i]);
}
}
// Compute offset for vertices related to each entity type
std::vector<std::int32_t> entity_offsets(index_maps.size() + 1, 0);
for (std::size_t i = 0; i < index_maps.size(); ++i)
entity_offsets[i + 1] = entity_offsets[i] + index_maps[i]->size_local();
// Copy existing vertices
std::vector<T> new_x(nlocal * 3);
std::span x_g = mesh.geometry().x();
for (int i = 0; i < index_maps[0]->size_local(); ++i)
for (int j = 0; j < 3; ++j)
new_x[i * 3 + j] = x_g[vertex_to_x[i] * 3 + j];
// Create vertices on edges, quad facet and hex cell centres
for (int j = 1; j < static_cast<int>(index_maps.size()); ++j)
{
auto e_to_v = topology->connectivity({j, e_index[j]}, {0, 0});
std::int32_t w_off = entity_offsets[j];
std::int32_t num_entities = index_maps[j]->size_local();
assert(num_entities == entity_offsets[j + 1] - entity_offsets[j]);
for (std::int32_t w = 0; w < num_entities; ++w)
{
auto vt = e_to_v->links(w);
std::size_t nv_ent = vt.size();
std::array<T, 3> v{0, 0, 0};
for (std::size_t i = 0; i < nv_ent; ++i)
{
for (int k = 0; k < 3; ++k)
v[k] += x_g[3 * vertex_to_x[vt[i]] + k];
}
// Get the (linear) center of the entity.
// TODO: change for higher-order geometry to use map.
for (int k = 0; k < 3; ++k)
new_x[(w + w_off) * 3 + k] = v[k] / static_cast<T>(nv_ent);
}
}
// Get this process global offset and range
std::int64_t nscan;
MPI_Scan(&nlocal, &nscan, 1, MPI_INT64_T, MPI_SUM, mesh.comm());
std::array<std::int64_t, 2> local_range = {nscan - nlocal, nscan};
// Compute indices for new vertices and share across processes
for (std::size_t j = 0; j < index_maps.size(); ++j)
{
std::int32_t num_entities = index_maps[j]->size_local();
assert(num_entities == entity_offsets[j + 1] - entity_offsets[j]);
std::iota(new_v[j].begin(), std::next(new_v[j].begin(), num_entities),
local_range[0] + entity_offsets[j]);
common::Scatterer sc(*index_maps[j], 1);
std::vector<std::int64_t> send_buffer(sc.local_indices().size());
{
auto& idx = sc.local_indices();
for (std::size_t i = 0; i < idx.size(); ++i)
send_buffer[i] = new_v[j][idx[i]];
}
std::vector<std::int64_t> recv_buffer(sc.remote_indices().size());
MPI_Request request = MPI_REQUEST_NULL;
sc.scatter_fwd_begin(send_buffer.data(), recv_buffer.data(), request);
sc.scatter_end(request);
{
std::span ghosts(std::next(new_v[j].begin(), num_entities),
new_v[j].end());
auto& idx = sc.remote_indices();
for (std::size_t i = 0; i < idx.size(); ++i)
ghosts[idx[i]] = recv_buffer[i];
}
}
// Create new topology
std::vector<std::vector<std::int64_t>> mixed_topology(
cell_entity_types.size());
// Find index of tets in topology list, if any
int ktet = -1;
auto it = std::find(cell_entity_types.begin(), cell_entity_types.end(),
mesh::CellType::tetrahedron);
if (it != cell_entity_types.end())
ktet = std::distance(cell_entity_types.begin(), it);
// Topology for tetrahedra which arise from pyramid subdivision
std::array<int, 16> pyr_to_tet_list
= {5, 13, 7, 9, 6, 13, 11, 7, 10, 13, 12, 11, 8, 13, 9, 12};
std::vector<int> refined_cell_list;
for (int k = 0; k < static_cast<int>(cell_entity_types.size()); ++k)
{
// Reserve an estimate of space for the topology of each type
mixed_topology[k].reserve(mesh.topology()->index_maps(tdim)[k]->size_local()
* 8 * 6);
// Select correct subdivision for celltype
// Hex -> 8 hex, Prism -> 8 prism, Tet -> 8 tet, Pyr -> 5 pyr + 4 tet
// Each `refined_cell_list` is the topology for cells of the same type,
// flattened, hence 64 entries for hex, 32 for tet, 48 for prism, 25 for
// pyramid. Additionally for pyramid there are 16 tetrahedron entries (see
// above).
switch (cell_entity_types[k])
{
case mesh::CellType::hexahedron:
spdlog::debug("Hex subdivision [{}]", k);
refined_cell_list
= {0, 9, 8, 20, 10, 22, 21, 26, 1, 11, 8, 20, 12, 23, 21, 26,
2, 13, 9, 20, 14, 24, 22, 26, 3, 13, 11, 20, 15, 24, 23, 26,
4, 16, 10, 21, 17, 25, 22, 26, 5, 16, 12, 21, 18, 25, 23, 26,
6, 17, 14, 22, 19, 25, 24, 26, 7, 18, 15, 23, 19, 25, 24, 26};
break;
case mesh::CellType::tetrahedron:
spdlog::debug("Tet subdivision [{}]", k);
refined_cell_list = {0, 7, 8, 9, 1, 5, 6, 9, 2, 4, 6, 8, 3, 4, 5, 7,
9, 4, 6, 8, 9, 4, 8, 7, 9, 4, 7, 5, 9, 4, 5, 6};
break;
case mesh::CellType::prism:
spdlog::debug("Prism subdivision [{}]", k);
refined_cell_list
= {0, 6, 7, 8, 15, 16, 6, 1, 9, 15, 10, 17, 7, 9, 2, 16,
17, 11, 6, 9, 7, 15, 17, 16, 15, 17, 16, 12, 14, 13, 8, 15,
16, 3, 12, 13, 11, 17, 16, 5, 14, 13, 10, 15, 17, 4, 12, 14};
break;
case mesh::CellType::pyramid:
spdlog::debug("Pyramid subdivision [{}]", k);
refined_cell_list = {0, 5, 6, 13, 7, 1, 8, 5, 13, 9, 3, 10, 8,
13, 12, 2, 6, 10, 13, 11, 7, 9, 11, 12, 4};
if (ktet == -1)
throw std::runtime_error("Cannot refine mesh with pyramids and no "
"tetrahedra.");
break;
case mesh::CellType::triangle:
spdlog::debug("Triangle subdivision [{}]", k);
refined_cell_list = {0, 4, 5, 1, 5, 3, 2, 3, 4, 3, 4, 5};
break;
case mesh::CellType::quadrilateral:
spdlog::debug("Quad subdivision [{}]", k);
refined_cell_list = {0, 4, 5, 8, 1, 6, 4, 8, 2, 7, 5, 8, 3, 7, 6, 8};
break;
default:
throw std::runtime_error("Unhandled cell type");
}
auto c_to_v = topology->connectivity({tdim, k}, {0, 0});
auto c_to_e = topology->connectivity({tdim, k}, {1, 0});
for (int c = 0; c < topology->index_maps(tdim)[k]->size_local(); ++c)
{
// Cell topology defined through its globally numbered vertices
std::vector<std::int64_t> entities;
// Extract new global vertex number for existing vertices
for (std::int32_t i : c_to_v->links(c))
entities.push_back(new_v[0][i]);
// Indices for vertices inserted on edges
for (std::int32_t i : c_to_e->links(c))
entities.push_back(new_v[1][i]);
if (e_index.size() > 2)
{
if (tdim == 3)
{
// Add any vertices on quadrilateral facets (3D mesh)
auto conn = topology->connectivity({3, k}, {2, e_index[2]});
if (conn)
{
for (std::int32_t i :
topology->connectivity({3, k}, {2, e_index[2]})->links(c))
entities.push_back(new_v[2][i]);
}
}
// Add vertices for quadrilateral cells (2D mesh)
else if (cell_entity_types[k] == mesh::CellType::quadrilateral)
entities.push_back(new_v[2][c]);
}
// Add vertices for hex cell centres
if (e_index.size() > 3
and cell_entity_types[k] == mesh::CellType::hexahedron)
entities.push_back(new_v[3][c]);
for (int i : refined_cell_list)
mixed_topology[k].push_back(entities[i]);
if (cell_entity_types[k] == mesh::CellType::pyramid)
{
for (int i : pyr_to_tet_list)
mixed_topology[ktet].push_back(entities[i]);
}
}
}
spdlog::debug("Create new mesh");
std::vector<std::span<const std::int64_t>> topo_span(mixed_topology.begin(),
mixed_topology.end());
mesh::Mesh new_mesh = mesh::create_mesh(
mesh.comm(), mesh.comm(), topo_span, mesh.geometry().cmaps(), mesh.comm(),
new_x, {new_x.size() / 3, 3}, partitioner, 2);
return new_mesh;
}
/// @cond Explicit instatiation for float and double
template mesh::Mesh<double>
refinement::uniform_refine(const mesh::Mesh<double>& mesh,
const mesh::CellPartitionFunction&);
template mesh::Mesh<float>
refinement::uniform_refine(const mesh::Mesh<float>& mesh,
const mesh::CellPartitionFunction&);
/// @endcond
|