File: matrix.cpp

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (182 lines) | stat: -rw-r--r-- 6,012 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// Copyright (C) 2022 Igor A. Baratta
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later
//
// Unit tests for Distributed la::MatrixCSR

#include "poisson.h"
#include <algorithm>
#include <basix/mdspan.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/catch_test_macros.hpp>
#include <concepts>
#include <dolfinx.h>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/la/MatrixCSR.h>
#include <dolfinx/la/SparsityPattern.h>
#include <dolfinx/la/Vector.h>
#include <mpi.h>
#include <span>

using namespace dolfinx;

namespace
{
/// @brief Create a matrix operator
/// @param comm The communicator to builf the matrix on
/// @return The assembled matrix
template <std::floating_point T>
la::MatrixCSR<T> create_operator(MPI_Comm comm)
{
  auto part = mesh::create_cell_partitioner(mesh::GhostMode::none);
  auto mesh = std::make_shared<mesh::Mesh<T>>(
      mesh::create_box(comm, {{{0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}}}, {12, 12, 12},
                       mesh::CellType::tetrahedron, part));
  auto element = basix::create_element<T>(
      basix::element::family::P, basix::cell::type::tetrahedron, 2,
      basix::element::lagrange_variant::unset,
      basix::element::dpc_variant::unset, false);

  auto V = std::make_shared<fem::FunctionSpace<T>>(fem::create_functionspace<T>(
      mesh, std::make_shared<fem::FiniteElement<T>>(element)));

  // Prepare and set Constants for the bilinear form
  auto kappa = std::make_shared<fem::Constant<T>>(2.0);
  auto a = std::make_shared<fem::Form<T, T>>(fem::create_form<T, T>(
      *form_poisson_a, {V, V}, {}, {{"kappa", kappa}}, {}, {}));

  la::SparsityPattern sp = fem::create_sparsity_pattern(*a);
  sp.finalize();
  la::MatrixCSR<T> A(sp);
  fem::assemble_matrix(A.mat_add_values(), *a, {});
  A.scatter_rev();

  return A;
}

void test_matrix_norm()
{
  la::MatrixCSR A0 = create_operator<double>(MPI_COMM_SELF);
  la::MatrixCSR A1 = create_operator<double>(MPI_COMM_WORLD);
  CHECK(A1.squared_norm() == Catch::Approx(A0.squared_norm()).epsilon(1e-8));
}

void test_matrix_apply()
{
  MPI_Comm comm = MPI_COMM_WORLD;
  auto part = mesh::create_cell_partitioner(mesh::GhostMode::none);
  auto mesh = std::make_shared<mesh::Mesh<double>>(
      mesh::create_box(comm, {{{0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}}}, {12, 12, 12},
                       mesh::CellType::tetrahedron, part));

  auto element = basix::create_element<double>(
      basix::element::family::P, basix::cell::type::tetrahedron, 2,
      basix::element::lagrange_variant::unset,
      basix::element::dpc_variant::unset, false);

  auto V = std::make_shared<fem::FunctionSpace<double>>(
      fem::create_functionspace<double>(
          mesh, std::make_shared<fem::FiniteElement<double>>(element)));

  // Prepare and set Constants for the bilinear form
  auto kappa = std::make_shared<fem::Constant<double>>(2.0);
  auto ui = std::make_shared<fem::Function<double, double>>(V);

  // Define variational forms
  auto a = std::make_shared<fem::Form<double, double>>(
      fem::create_form<double, double>(*form_poisson_a, {V, V}, {},
                                       {{"kappa", kappa}}, {}, {}));

  // Create sparsity pattern
  la::SparsityPattern sp = fem::create_sparsity_pattern(*a);
  sp.finalize();

  // Assemble matrix
  la::MatrixCSR<double> A(sp);
  fem::assemble_matrix(A.mat_add_values(), *a, {});
  A.scatter_rev();
  CHECK((V->dofmap()->index_map->size_local() == A.num_owned_rows()));

  // Get compatible vectors
  auto col_map = A.index_map(1);

  la::Vector<double> x(col_map, 1);
  la::Vector<double> y(col_map, 1);

  std::size_t col_size = col_map->size_local() + col_map->num_ghosts();
  CHECK(x.array().size() == col_size);

  // Fill x vector with 1 (Constant)
  std::ranges::fill(x.array(), 1);

  // Matrix A represents the action of the Laplace operator, so when
  // applied to a constant vector the result should be zero
  A.mult(x, y);

  std::ranges::for_each(y.array(),
                        [](auto a) { REQUIRE(std::abs(a) < 1e-13); });
}

void test_matrix_cast()
{
  la::MatrixCSR A0 = create_operator<double>(MPI_COMM_WORLD);
  la::MatrixCSR<float> A1(A0);
  la::MatrixCSR<std::complex<double>> A2(A1);
}

void test_matrix()
{
  auto map0 = std::make_shared<common::IndexMap>(MPI_COMM_WORLD, 8);
  la::SparsityPattern p(MPI_COMM_WORLD, {map0, map0}, {1, 1});
  p.insert(0, 0);
  p.insert(4, 5);
  p.insert(5, 4);
  p.finalize();

  using T = float;
  la::MatrixCSR<T> A(p);
  A.add(std::vector<decltype(A)::value_type>{1}, std::vector{0},
        std::vector{0});
  A.add(std::vector<decltype(A)::value_type>{2.3}, std::vector{4},
        std::vector{5});

  const std::vector Adense0 = A.to_dense();

  // Note: we cut off the ghost rows by intent here! But therefore we are not
  // able to work with the dimensions of Adense0 to compute indices, these
  // contain the ghost rows, which also vary between processes.
  md::mdspan<const T, md::extents<std::size_t, 8, md::dynamic_extent>> Adense(
      Adense0.data(), 8, A.index_map(1)->size_global());

  std::vector<T> Aref_data(8 * A.index_map(1)->size_global(), 0);
  md::mdspan<T, md::extents<std::size_t, 8, md::dynamic_extent>> Aref(
      Aref_data.data(), 8, A.index_map(1)->size_global());

  auto to_global_col = [&](auto col)
  {
    std::array<std::int64_t, 1> tmp;
    A.index_map(1)->local_to_global(std::vector<std::int32_t>{col}, tmp);
    return tmp[0];
  };
  Aref(0, to_global_col(0)) = 1;
  Aref(4, to_global_col(5)) = 2.3;

  for (std::size_t i = 0; i < Adense.extent(0); ++i)
    for (std::size_t j = 0; j < Adense.extent(1); ++j)
      CHECK(Adense(i, j) == Aref(i, j));

  Aref(4, to_global_col(4)) = 2.3;
  CHECK(Adense(4, to_global_col(4)) != Aref(4, to_global_col(4)));
}

} // namespace

TEST_CASE("Linear Algebra CSR Matrix", "[la_matrix]")
{
  CHECK_NOTHROW(test_matrix());
  CHECK_NOTHROW(test_matrix_apply());
  CHECK_NOTHROW(test_matrix_norm());
  CHECK_NOTHROW(test_matrix_cast());
}