1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
// Copyright (C) 2022 Igor A. Baratta
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Unit tests for Distributed la::MatrixCSR
#include "poisson.h"
#include <algorithm>
#include <basix/mdspan.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/catch_test_macros.hpp>
#include <concepts>
#include <dolfinx.h>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/la/MatrixCSR.h>
#include <dolfinx/la/SparsityPattern.h>
#include <dolfinx/la/Vector.h>
#include <mpi.h>
#include <span>
using namespace dolfinx;
namespace
{
/// @brief Create a matrix operator
/// @param comm The communicator to builf the matrix on
/// @return The assembled matrix
template <std::floating_point T>
la::MatrixCSR<T> create_operator(MPI_Comm comm)
{
auto part = mesh::create_cell_partitioner(mesh::GhostMode::none);
auto mesh = std::make_shared<mesh::Mesh<T>>(
mesh::create_box(comm, {{{0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}}}, {12, 12, 12},
mesh::CellType::tetrahedron, part));
auto element = basix::create_element<T>(
basix::element::family::P, basix::cell::type::tetrahedron, 2,
basix::element::lagrange_variant::unset,
basix::element::dpc_variant::unset, false);
auto V = std::make_shared<fem::FunctionSpace<T>>(fem::create_functionspace<T>(
mesh, std::make_shared<fem::FiniteElement<T>>(element)));
// Prepare and set Constants for the bilinear form
auto kappa = std::make_shared<fem::Constant<T>>(2.0);
auto a = std::make_shared<fem::Form<T, T>>(fem::create_form<T, T>(
*form_poisson_a, {V, V}, {}, {{"kappa", kappa}}, {}, {}));
la::SparsityPattern sp = fem::create_sparsity_pattern(*a);
sp.finalize();
la::MatrixCSR<T> A(sp);
fem::assemble_matrix(A.mat_add_values(), *a, {});
A.scatter_rev();
return A;
}
void test_matrix_norm()
{
la::MatrixCSR A0 = create_operator<double>(MPI_COMM_SELF);
la::MatrixCSR A1 = create_operator<double>(MPI_COMM_WORLD);
CHECK(A1.squared_norm() == Catch::Approx(A0.squared_norm()).epsilon(1e-8));
}
void test_matrix_apply()
{
MPI_Comm comm = MPI_COMM_WORLD;
auto part = mesh::create_cell_partitioner(mesh::GhostMode::none);
auto mesh = std::make_shared<mesh::Mesh<double>>(
mesh::create_box(comm, {{{0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}}}, {12, 12, 12},
mesh::CellType::tetrahedron, part));
auto element = basix::create_element<double>(
basix::element::family::P, basix::cell::type::tetrahedron, 2,
basix::element::lagrange_variant::unset,
basix::element::dpc_variant::unset, false);
auto V = std::make_shared<fem::FunctionSpace<double>>(
fem::create_functionspace<double>(
mesh, std::make_shared<fem::FiniteElement<double>>(element)));
// Prepare and set Constants for the bilinear form
auto kappa = std::make_shared<fem::Constant<double>>(2.0);
auto ui = std::make_shared<fem::Function<double, double>>(V);
// Define variational forms
auto a = std::make_shared<fem::Form<double, double>>(
fem::create_form<double, double>(*form_poisson_a, {V, V}, {},
{{"kappa", kappa}}, {}, {}));
// Create sparsity pattern
la::SparsityPattern sp = fem::create_sparsity_pattern(*a);
sp.finalize();
// Assemble matrix
la::MatrixCSR<double> A(sp);
fem::assemble_matrix(A.mat_add_values(), *a, {});
A.scatter_rev();
CHECK((V->dofmap()->index_map->size_local() == A.num_owned_rows()));
// Get compatible vectors
auto col_map = A.index_map(1);
la::Vector<double> x(col_map, 1);
la::Vector<double> y(col_map, 1);
std::size_t col_size = col_map->size_local() + col_map->num_ghosts();
CHECK(x.array().size() == col_size);
// Fill x vector with 1 (Constant)
std::ranges::fill(x.array(), 1);
// Matrix A represents the action of the Laplace operator, so when
// applied to a constant vector the result should be zero
A.mult(x, y);
std::ranges::for_each(y.array(),
[](auto a) { REQUIRE(std::abs(a) < 1e-13); });
}
void test_matrix_cast()
{
la::MatrixCSR A0 = create_operator<double>(MPI_COMM_WORLD);
la::MatrixCSR<float> A1(A0);
la::MatrixCSR<std::complex<double>> A2(A1);
}
void test_matrix()
{
auto map0 = std::make_shared<common::IndexMap>(MPI_COMM_WORLD, 8);
la::SparsityPattern p(MPI_COMM_WORLD, {map0, map0}, {1, 1});
p.insert(0, 0);
p.insert(4, 5);
p.insert(5, 4);
p.finalize();
using T = float;
la::MatrixCSR<T> A(p);
A.add(std::vector<decltype(A)::value_type>{1}, std::vector{0},
std::vector{0});
A.add(std::vector<decltype(A)::value_type>{2.3}, std::vector{4},
std::vector{5});
const std::vector Adense0 = A.to_dense();
// Note: we cut off the ghost rows by intent here! But therefore we are not
// able to work with the dimensions of Adense0 to compute indices, these
// contain the ghost rows, which also vary between processes.
md::mdspan<const T, md::extents<std::size_t, 8, md::dynamic_extent>> Adense(
Adense0.data(), 8, A.index_map(1)->size_global());
std::vector<T> Aref_data(8 * A.index_map(1)->size_global(), 0);
md::mdspan<T, md::extents<std::size_t, 8, md::dynamic_extent>> Aref(
Aref_data.data(), 8, A.index_map(1)->size_global());
auto to_global_col = [&](auto col)
{
std::array<std::int64_t, 1> tmp;
A.index_map(1)->local_to_global(std::vector<std::int32_t>{col}, tmp);
return tmp[0];
};
Aref(0, to_global_col(0)) = 1;
Aref(4, to_global_col(5)) = 2.3;
for (std::size_t i = 0; i < Adense.extent(0); ++i)
for (std::size_t j = 0; j < Adense.extent(1); ++j)
CHECK(Adense(i, j) == Aref(i, j));
Aref(4, to_global_col(4)) = 2.3;
CHECK(Adense(4, to_global_col(4)) != Aref(4, to_global_col(4)));
}
} // namespace
TEST_CASE("Linear Algebra CSR Matrix", "[la_matrix]")
{
CHECK_NOTHROW(test_matrix());
CHECK_NOTHROW(test_matrix_apply());
CHECK_NOTHROW(test_matrix_norm());
CHECK_NOTHROW(test_matrix_cast());
}
|