1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.14.4
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# # Biharmonic equation
#
# ```{admonition} Download sources
# :class: download
# * {download}`Python script <./demo_biharmonic.py>`
# * {download}`Jupyter notebook <./demo_biharmonic.ipynb>`
# ```
# This demo illustrates how to:
#
# - Solve a linear partial differential equation
# - Use a discontinuous Galerkin method
# - Solve a fourth-order differential equation
#
# ## Equation and problem definition
#
# ### Strong formulation
#
# The biharmonic equation is a fourth-order elliptic equation.
# On the domain $\Omega \subset \mathbb{R}^{d}$, $1 \le d \le 3$, it reads
#
# $$
# \nabla^{4} u = f \quad {\rm in} \ \Omega,
# $$
#
# where $\nabla^{4} \equiv \nabla^{2} \nabla^{2}$ is the biharmonic
# operator and $f$ is a prescribed source term.
# To formulate a complete boundary value problem, the biharmonic equation
# must be complemented by suitable boundary conditions.
#
# ### Weak formulation
#
# Multiplying the biharmonic equation by a test function and integrating
# by parts twice leads to a problem of second-order derivatives, which
# would require $H^{2}$ conforming (roughly $C^{1}$ continuous) basis
# functions. To solve the biharmonic equation using Lagrange finite element
# basis functions, the biharmonic equation can be split into two second-
# order equations (see the Mixed Poisson demo for a mixed method for the
# Poisson equation), or a variational formulation can be constructed that
# imposes weak continuity of normal derivatives between finite element
# cells. This demo uses a discontinuous Galerkin approach to impose
# continuity of the normal derivative weakly.
#
# Consider a triangulation $\mathcal{T}$ of the domain $\Omega$, where
# the set of interior facets is denoted by $\mathcal{E}_h^{\rm int}$.
# Functions evaluated on opposite sides of a facet are indicated by the
# subscripts $+$ and $-$.
# Using the standard continuous Lagrange finite element space
#
# $$
# V = \left\{v \in H^{1}_{0}(\Omega)\,:\, v \in P_{k}(K) \
# \forall \ K \in \mathcal{T} \right\}
# $$
#
# and considering the boundary conditions
#
# $$
# \begin{align}
# u &= 0 \quad {\rm on} \ \partial\Omega, \\
# \nabla^{2} u &= 0 \quad {\rm on} \ \partial\Omega,
# \end{align}
# $$
#
# a weak formulation of the biharmonic problem reads: find $u \in V$ such
# that
#
# $$
# a(u,v)=L(v) \quad \forall \ v \in V,
# $$
#
# where the bilinear form is
#
# $$
# a(u, v) =
# \sum_{K \in \mathcal{T}} \int_{K} \nabla^{2} u \nabla^{2} v \, {\rm d}x \
# +\sum_{E \in \mathcal{E}_h^{\rm int}}\left(\int_{E} \frac{\alpha}{h_E}
# [\!\![ \nabla u ]\!\!] [\!\![ \nabla v ]\!\!] \, {\rm d}s
# - \int_{E} \left<\nabla^{2} u \right>[\!\![ \nabla v ]\!\!] \, {\rm d}s
# - \int_{E} [\!\![ \nabla u ]\!\!] \left<\nabla^{2} v \right> \,
# {\rm d}s\right)
# $$
#
# and the linear form is
#
# $$
# L(v) = \int_{\Omega} fv \, {\rm d}x.
# $$
#
# Furthermore, $\left< u \right> = \frac{1}{2} (u_{+} + u_{-})$,
# $[\!\![ w ]\!\!] = w_{+} \cdot n_{+} + w_{-} \cdot n_{-}$,
# $\alpha \ge 0$ is a penalty parameter and
# $h_E$ is a measure of the cell size.
#
# The input parameters for this demo are defined as follows:
#
# - $\Omega = [0,1] \times [0,1]$ (a unit square)
# - $\alpha = 8.0$ (penalty parameter)
# - $f = 4.0 \pi^4\sin(\pi x)\sin(\pi y)$ (source term)
#
# ## Implementation
#
# We first import the modules and functions that the program uses:
# +
from pathlib import Path
from mpi4py import MPI
from petsc4py.PETSc import ScalarType # type: ignore
import ufl
from dolfinx import fem, io, mesh, plot
from dolfinx.fem.petsc import LinearProblem
from dolfinx.mesh import CellType, GhostMode
# -
# We begin by using {py:func}`create_rectangle
# <dolfinx.mesh.create_rectangle>` to create a rectangular
# {py:class}`Mesh <dolfinx.mesh.Mesh>` of the domain, and creating a
# finite element {py:class}`FunctionSpace <dolfinx.fem.FunctionSpace>`
# $V$ on the mesh.
msh = mesh.create_rectangle(
comm=MPI.COMM_WORLD,
points=((0.0, 0.0), (1.0, 1.0)),
n=(32, 32),
cell_type=CellType.triangle,
ghost_mode=GhostMode.shared_facet,
)
V = fem.functionspace(msh, ("Lagrange", 2))
# The second argument to {py:func}`functionspace
# <dolfinx.fem.functionspace>` is a tuple consisting of `(family,
# degree)`, where `family` is the finite element family, and `degree`
# specifies the polynomial degree. in this case `V` consists of
# second-order, continuous Lagrange finite element functions.
# For further details of how one can specify
# finite elements as tuples, see {py:class}`ElementMetaData
# <dolfinx.fem.ElementMetaData>`.
#
# Next, we locate the mesh facets that lie on the boundary
# $\Gamma_D = \partial\Omega$.
# We do this using using {py:func}`exterior_facet_indices
# <dolfinx.mesh.exterior_facet_indices>` which returns all mesh boundary
# facets (Note: if we are only interested in a subset of those, consider
# {py:func}`locate_entities_boundary
# <dolfinx.mesh.locate_entities_boundary>`).
tdim = msh.topology.dim
msh.topology.create_connectivity(tdim - 1, tdim)
facets = mesh.exterior_facet_indices(msh.topology)
# We now find the degrees-of-freedom that are associated with the
# boundary facets using {py:func}`locate_dofs_topological
# <dolfinx.fem.locate_dofs_topological>`
dofs = fem.locate_dofs_topological(V=V, entity_dim=1, entities=facets)
# and use {py:func}`dirichletbc <dolfinx.fem.dirichletbc>` to create a
# {py:class}`DirichletBC <dolfinx.fem.DirichletBC>`
# class that represents the boundary condition. In this case, we impose
# Dirichlet boundary conditions with value $0$ on the entire boundary
# $\partial\Omega$.
bc = fem.dirichletbc(value=ScalarType(0), dofs=dofs, V=V)
# Next, we express the variational problem using UFL.
#
# First, the penalty parameter $\alpha$ is defined. In addition, we define
# a variable `h` for the cell diameter $h_E$, a variable `n`for the
# outward-facing normal vector $n$ and a variable `h_avg` for the
# average size of cells sharing a facet
# $\left< h \right> = \frac{1}{2} (h_{+} + h_{-})$. Here, the UFL syntax
# `('+')` and `('-')` restricts a function to the `('+')` and `('-')`
# sides of a facet.
alpha = ScalarType(8.0)
h = ufl.CellDiameter(msh)
n = ufl.FacetNormal(msh)
h_avg = (h("+") + h("-")) / 2.0
# After that, we can define the variational problem consisting of the
# bilinear form $a$ and the linear form $L$. The source term is prescribed
# as $f = 4.0 \pi^4\sin(\pi x)\sin(\pi y)$. Note that with `dS`,
# integration is carried out over all the interior facets
# $\mathcal{E}_h^{\rm int}$, whereas with `ds` it would be only the facets
# on the boundary of the domain, i.e. $\partial\Omega$. The jump operator
# $[\!\![ w ]\!\!] = w_{+} \cdot n_{+} + w_{-} \cdot n_{-}$ w.r.t. the
# outward-facing normal vector $n$ is in UFL available as `jump(w, n)`.
# +
# Define variational problem
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
x = ufl.SpatialCoordinate(msh)
f = 4.0 * ufl.pi**4 * ufl.sin(ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
a = (
ufl.inner(ufl.div(ufl.grad(u)), ufl.div(ufl.grad(v))) * ufl.dx
- ufl.inner(ufl.avg(ufl.div(ufl.grad(u))), ufl.jump(ufl.grad(v), n)) * ufl.dS
- ufl.inner(ufl.jump(ufl.grad(u), n), ufl.avg(ufl.div(ufl.grad(v)))) * ufl.dS
+ alpha / h_avg * ufl.inner(ufl.jump(ufl.grad(u), n), ufl.jump(ufl.grad(v), n)) * ufl.dS
)
L = ufl.inner(f, v) * ufl.dx
# -
# We create a {py:class}`LinearProblem <dolfinx.fem.petsc.LinearProblem>`
# object that brings together the variational problem, the Dirichlet
# boundary condition, and which specifies the linear solver. In this
# case we use a direct (LU) solver. The {py:func}`solve
# <dolfinx.fem.petsc.LinearProblem.solve>` will compute a solution.
problem = LinearProblem(
a,
L,
bcs=[bc],
petsc_options_prefix="demo_biharmonic_",
petsc_options={"ksp_type": "preonly", "pc_type": "lu"},
)
uh = problem.solve()
assert isinstance(uh, fem.Function)
assert problem.solver.getConvergedReason() > 0
# The solution can be written to a {py:class}`XDMFFile
# <dolfinx.io.XDMFFile>` file visualization with ParaView or VisIt
out_folder = Path("out_biharmonic")
out_folder.mkdir(parents=True, exist_ok=True)
with io.XDMFFile(msh.comm, out_folder / "biharmonic.xdmf", "w") as file:
V1 = fem.functionspace(msh, ("Lagrange", 1))
u1 = fem.Function(V1)
u1.interpolate(uh)
file.write_mesh(msh)
file.write_function(u1)
# and displayed using [pyvista](https://docs.pyvista.org/).
# +
try:
import pyvista
cells, types, x = plot.vtk_mesh(V)
grid = pyvista.UnstructuredGrid(cells, types, x)
grid.point_data["u"] = uh.x.array.real
grid.set_active_scalars("u")
plotter = pyvista.Plotter()
plotter.add_mesh(grid, show_edges=True)
warped = grid.warp_by_scalar()
plotter.add_mesh(warped)
if pyvista.OFF_SCREEN:
plotter.screenshot(out_folder / "uh_biharmonic.png")
else:
plotter.show()
except ModuleNotFoundError:
print("'pyvista' is required to visualise the solution")
print("Install 'pyvista' with pip: 'python3 -m pip install pyvista'")
|