1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.13.6
# ---
# # Poisson equation
#
# ```{admonition} Download sources
# :class: download
# * {download}`Python script <./demo_mixed-topology.py>`
# * {download}`Jupyter notebook <./demo_mixed-topology.ipynb>`
# ```
# This demo illustrates how to:
# - Solve a simple Helmholtz problem on a mixed-topology mesh.
# - Create a mesh from numpy arrays using {py:func}`
# dolfinx.mesh.create_mesh`
#
# ```{admonition} In development
# Mixed-topology meshes are a work in progress and are not yet fully
# supported in DOLFINx.
# ```
# +
from mpi4py import MPI
import numpy as np
from scipy.sparse.linalg import spsolve
import basix
import dolfinx.cpp as _cpp
import ufl
from dolfinx.cpp.mesh import GhostMode, create_cell_partitioner, create_mesh
from dolfinx.fem import (
FiniteElement,
FunctionSpace,
assemble_matrix,
assemble_vector,
coordinate_element,
create_dofmaps,
mixed_topology_form,
)
from dolfinx.io.utils import cell_perm_vtk
from dolfinx.mesh import CellType, Mesh, Topology
# -
if MPI.COMM_WORLD.size > 1:
print("Not yet running in parallel")
exit(0)
# ## Create a mixed-topology mesh
# +
nx = 16
ny = 16
nz = 16
n_cells = nx * ny * nz
cells: list = [[], []]
orig_idx: list = [[], []]
geom = []
if MPI.COMM_WORLD.rank == 0:
idx = 0
for i in range(n_cells):
iz = i // (nx * ny)
j = i % (nx * ny)
iy = j // nx
ix = j % nx
v0 = (iz * (ny + 1) + iy) * (nx + 1) + ix
v1 = v0 + 1
v2 = v0 + (nx + 1)
v3 = v1 + (nx + 1)
v4 = v0 + (nx + 1) * (ny + 1)
v5 = v1 + (nx + 1) * (ny + 1)
v6 = v2 + (nx + 1) * (ny + 1)
v7 = v3 + (nx + 1) * (ny + 1)
if ix < nx / 2:
cells[0] += [v0, v1, v2, v3, v4, v5, v6, v7]
orig_idx[0] += [idx]
idx += 1
else:
cells[1] += [v0, v1, v2, v4, v5, v6]
orig_idx[1] += [idx]
idx += 1
cells[1] += [v1, v2, v3, v5, v6, v7]
orig_idx[1] += [idx]
idx += 1
n_points = (nx + 1) * (ny + 1) * (nz + 1)
sqxy = (nx + 1) * (ny + 1)
for v in range(n_points):
iz = v // sqxy
p = v % sqxy
iy = p // (nx + 1)
ix = p % (nx + 1)
geom += [[ix / nx, iy / ny, iz / nz]]
cells_np = [np.array(c) for c in cells]
geomx = np.array(geom, dtype=np.float64)
hexahedron = coordinate_element(CellType.hexahedron, 1)
prism = coordinate_element(CellType.prism, 1)
part = create_cell_partitioner(GhostMode.none)
mesh = create_mesh(
MPI.COMM_WORLD, cells_np, [hexahedron._cpp_object, prism._cpp_object], geomx, part, 2
)
# -
# ## Create a mixed-topology dofmap and function space
# Create elements and dofmaps for each cell type
# +
elements = [
basix.create_element(basix.ElementFamily.P, basix.CellType.hexahedron, 1),
basix.create_element(basix.ElementFamily.P, basix.CellType.prism, 1),
]
dolfinx_elements = [
FiniteElement(_cpp.fem.FiniteElement_float64(e._e, None, True)) for e in elements
]
# NOTE: Both dofmaps have the same IndexMap, but different cell_dofs
dofmaps = create_dofmaps(
mesh.comm,
Topology(mesh.topology),
dolfinx_elements,
)
# Create C++ function space
V_cpp = _cpp.fem.FunctionSpace_float64(
mesh, [e._cpp_object for e in dolfinx_elements], [dofmap._cpp_object for dofmap in dofmaps]
)
# -
# ## Creating and compiling a variational formulation
# We create the variational forms for each cell type.
# FIXME: This hack is required at the moment because UFL does not yet know
# about mixed topology meshes.
a = []
L = []
for i, cell_name in enumerate(["hexahedron", "prism"]):
print(f"Creating form for {cell_name}")
element = basix.ufl.wrap_element(elements[i])
domain = ufl.Mesh(basix.ufl.element("Lagrange", cell_name, 1, shape=(3,)))
V = FunctionSpace(Mesh(mesh, domain), element, V_cpp)
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
k = 12.0
x = ufl.SpatialCoordinate(domain)
a += [(ufl.inner(ufl.grad(u), ufl.grad(v)) - k**2 * u * v) * ufl.dx]
f = ufl.sin(ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
L += [f * v * ufl.dx]
# Compile the form
# FIXME: For the time being, since UFL doesn't understand mixed topology
# meshes, we have to call {py:meth}`mixed_topology_form
# <dolfinx.fem.mixed_topology_form>` instead of form.
a_form = mixed_topology_form(a, dtype=np.float64)
L_form = mixed_topology_form(L, dtype=np.float64)
# ## Assembling and solving the linear system
# We use the native {py:class}`matrix<dolfinx.la.MatrixCSR>` and
# {py:class}`vector<dolfinx.la.Vector>` format in DOLFINx to assemble
# the left and right hand side of the linear system.
A = assemble_matrix(a_form)
b = assemble_vector(L_form)
# We use {py:func}`scipy.sparse.linalg.spsolve` to solve the
# resulting linear system
A_scipy = A.to_scipy()
b_scipy = b.array
x = spsolve(A_scipy, b_scipy)
print(f"Solution vector norm {np.linalg.norm(x)}")
# Mixed-topology I/O
# We manually build a ASCII XDMF file to store the mesh
# and solution
# NOTE: this should be replaced with VTKHDF
# +
xdmf = """<?xml version="1.0"?>
<!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []>
<Xdmf Version="3.0" xmlns:xi="https://www.w3.org/2001/XInclude">
<Domain>
<Grid Name="mesh" GridType="Collection" CollectionType="spatial">
"""
perm = [cell_perm_vtk(CellType.hexahedron, 8), cell_perm_vtk(CellType.prism, 6)]
topologies = ["Hexahedron", "Wedge"]
for j in range(2):
vtk_topology = []
geom_dm = mesh.geometry.dofmaps(j)
for c in geom_dm:
vtk_topology += list(c[perm[j]])
topology_type = topologies[j]
xdmf += f"""
<Grid Name="{topology_type}" GridType="Uniform">
<Topology TopologyType="{topology_type}">
<DataItem Dimensions="{geom_dm.shape[0]} {geom_dm.shape[1]}"
Precision="4" NumberType="Int" Format="XML">
{" ".join(str(val) for val in vtk_topology)}
</DataItem>
</Topology>
<Geometry GeometryType="XYZ" NumberType="float" Rank="2" Precision="8">
<DataItem Dimensions="{mesh.geometry.x.shape[0]} 3" Format="XML">
{" ".join(str(val) for val in mesh.geometry.x.flatten())}
</DataItem>
</Geometry>
<Attribute Name="u" Center="Node" NumberType="float" Precision="8">
<DataItem Dimensions="{len(x)}" Format="XML">
{" ".join(str(val) for val in x)}
</DataItem>
</Attribute>
</Grid>"""
xdmf += """
</Grid>
</Domain>
</Xdmf>
"""
fd = open("mixed-mesh.xdmf", "w")
fd.write(xdmf)
fd.close()
# -
|