1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.13.6
# ---
# # Poisson equation
#
# This demo illustrates how to:
#
# - Create a {py:class}`function space <dolfinx.fem.FunctionSpace>`
# - Solve a linear partial differential equation
#
# ```{admonition} Download sources
# :class: download
# * {download}`Python script <./demo_poisson.py>`
# * {download}`Jupyter notebook <./demo_poisson.ipynb>`
# ```
# ## Equation and problem definition
#
# For a domain $\Omega \subset \mathbb{R}^n$ with boundary $\partial
# \Omega = \Gamma_{D} \cup \Gamma_{N}$, the Poisson equation with
# particular boundary conditions reads:
#
# $$
# \begin{align}
# - \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\
# u &= 0 \quad {\rm on} \ \Gamma_{D}, \\
# \nabla u \cdot n &= g \quad {\rm on} \ \Gamma_{N}. \\
# \end{align}
# $$
#
# where $f$ and $g$ are input data and $n$ denotes the outward directed
# boundary normal. The variational problem reads: find $u \in V$ such
# that
#
# $$
# a(u, v) = L(v) \quad \forall \ v \in V,
# $$
#
# where $V$ is a suitable function space and
#
# $$
# \begin{align}
# a(u, v) &:= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x, \\
# L(v) &:= \int_{\Omega} f v \, {\rm d} x + \int_{\Gamma_{N}} g v \,
# {\rm d} s.
# \end{align}
# $$
#
# The expression $a(u, v)$ is the bilinear form and $L(v)$
# is the linear form. It is assumed that all functions in $V$
# satisfy the Dirichlet boundary conditions ($u = 0 \ {\rm on} \
# \Gamma_{D}$).
#
# In this demo we consider:
#
# - $\Omega = [0,2] \times [0,1]$ (a rectangle)
# - $\Gamma_{D} = \{(0, y) \cup (2, y) \subset \partial \Omega\}$
# - $\Gamma_{N} = \{(x, 0) \cup (x, 1) \subset \partial \Omega\}$
# - $g = \sin(5x)$
# - $f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)$
#
# ## Implementation
#
# The modules that will be used are imported:
# +
from pathlib import Path
from mpi4py import MPI
from petsc4py.PETSc import ScalarType # type: ignore
import numpy as np
import ufl
from dolfinx import fem, io, mesh, plot
from dolfinx.fem.petsc import LinearProblem
# -
# Note that it is important to first `from mpi4py import MPI` to
# ensure that MPI is correctly initialised.
# We create a rectangular {py:class}`Mesh <dolfinx.mesh.Mesh>` using
# {py:func}`create_rectangle <dolfinx.mesh.create_rectangle>`, and
# create a finite element {py:class}`function space
# <dolfinx.fem.FunctionSpace>` $V$ on the mesh.
# +
msh = mesh.create_rectangle(
comm=MPI.COMM_WORLD,
points=((0.0, 0.0), (2.0, 1.0)),
n=(32, 16),
cell_type=mesh.CellType.triangle,
)
V = fem.functionspace(msh, ("Lagrange", 1))
# -
# The second argument to {py:func}`functionspace
# <dolfinx.fem.functionspace>` is a tuple `(family, degree)`, where
# `family` is the finite element family, and `degree` specifies the
# polynomial degree. In this case `V` is a space of continuous Lagrange
# finite elements of degree 1. For further details of how one can specify
# finite elements as tuples, see {py:class}`ElementMetaData
# <dolfinx.fem.ElementMetaData>`.
#
# To apply the Dirichlet boundary conditions, we find the mesh facets
# (entities of topological co-dimension 1) that lie on the boundary
# $\Gamma_D$ using {py:func}`locate_entities_boundary
# <dolfinx.mesh.locate_entities_boundary>`. The function is provided
# with a 'marker' function that returns `True` for points `x` on the
# boundary and `False` otherwise.
facets = mesh.locate_entities_boundary(
msh,
dim=(msh.topology.dim - 1),
marker=lambda x: np.isclose(x[0], 0.0) | np.isclose(x[0], 2.0),
)
# We now find the degrees-of-freedom that are associated with the
# boundary facets using {py:func}`locate_dofs_topological
# <dolfinx.fem.locate_dofs_topological>`:
dofs = fem.locate_dofs_topological(V=V, entity_dim=1, entities=facets)
# and use {py:func}`dirichletbc <dolfinx.fem.dirichletbc>` to create a
# {py:class}`DirichletBC <dolfinx.fem.DirichletBC>` class that
# represents the boundary condition:
bc = fem.dirichletbc(value=ScalarType(0), dofs=dofs, V=V)
# Next, the variational problem is defined:
# +
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
x = ufl.SpatialCoordinate(msh)
f = 10 * ufl.exp(-((x[0] - 0.5) ** 2 + (x[1] - 0.5) ** 2) / 0.02)
g = ufl.sin(5 * x[0])
a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
L = ufl.inner(f, v) * ufl.dx + ufl.inner(g, v) * ufl.ds
# -
# A {py:class}`LinearProblem <dolfinx.fem.petsc.LinearProblem>` object is
# created that brings together the variational problem, the Dirichlet
# boundary condition, and which specifies the linear solver. In this
# case an LU solver is used, and we ask that PETSc throws an error
# if the solver does not converge. The {py:func}`solve
# <dolfinx.fem.petsc.LinearProblem.solve>` computes the solution.
# +
problem = LinearProblem(
a,
L,
bcs=[bc],
petsc_options_prefix="demo_poisson_",
petsc_options={"ksp_type": "preonly", "pc_type": "lu", "ksp_error_if_not_converged": True},
)
uh = problem.solve()
assert isinstance(uh, fem.Function)
# -
# The solution can be written to a {py:class}`XDMFFile
# <dolfinx.io.XDMFFile>` file visualization with [ParaView](https://www.paraview.org/)
# or [VisIt](https://visit-dav.github.io/visit-website/):
# +
out_folder = Path("out_poisson")
out_folder.mkdir(parents=True, exist_ok=True)
with io.XDMFFile(msh.comm, out_folder / "poisson.xdmf", "w") as file:
file.write_mesh(msh)
file.write_function(uh)
# -
# and displayed using [pyvista](https://docs.pyvista.org/).
# +
try:
import pyvista
cells, types, x = plot.vtk_mesh(V)
grid = pyvista.UnstructuredGrid(cells, types, x)
grid.point_data["u"] = uh.x.array.real
grid.set_active_scalars("u")
plotter = pyvista.Plotter()
plotter.add_mesh(grid, show_edges=True)
warped = grid.warp_by_scalar()
plotter.add_mesh(warped)
if pyvista.OFF_SCREEN:
plotter.screenshot(out_folder / "uh_poisson.png")
else:
plotter.show()
except ModuleNotFoundError:
print("'pyvista' is required to visualise the solution.")
print("To install pyvista with pip: 'python3 -m pip install pyvista'.")
# -
|