File: demo_poisson.py

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (201 lines) | stat: -rw-r--r-- 6,231 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.13.6
# ---

# # Poisson equation
#
# This demo illustrates how to:
#
# - Create a {py:class}`function space <dolfinx.fem.FunctionSpace>`
# - Solve a linear partial differential equation
#
# ```{admonition} Download sources
# :class: download
# * {download}`Python script <./demo_poisson.py>`
# * {download}`Jupyter notebook <./demo_poisson.ipynb>`
# ```
# ## Equation and problem definition
#
# For a domain $\Omega \subset \mathbb{R}^n$ with boundary $\partial
# \Omega = \Gamma_{D} \cup \Gamma_{N}$, the Poisson equation with
# particular boundary conditions reads:
#
# $$
# \begin{align}
#   - \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\
#   u &= 0 \quad {\rm on} \ \Gamma_{D}, \\
#   \nabla u \cdot n &= g \quad {\rm on} \ \Gamma_{N}. \\
# \end{align}
# $$
#
# where $f$ and $g$ are input data and $n$ denotes the outward directed
# boundary normal. The variational problem reads: find $u \in V$ such
# that
#
# $$
# a(u, v) = L(v) \quad \forall \ v \in V,
# $$
#
# where $V$ is a suitable function space and
#
# $$
# \begin{align}
#   a(u, v) &:= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x, \\
#   L(v)    &:= \int_{\Omega} f v \, {\rm d} x + \int_{\Gamma_{N}} g v \,
#               {\rm d} s.
# \end{align}
# $$
#
# The expression $a(u, v)$ is the bilinear form and $L(v)$
# is the linear form. It is assumed that all functions in $V$
# satisfy the Dirichlet boundary conditions ($u = 0 \ {\rm on} \
# \Gamma_{D}$).
#
# In this demo we consider:
#
# - $\Omega = [0,2] \times [0,1]$ (a rectangle)
# - $\Gamma_{D} = \{(0, y) \cup (2, y) \subset \partial \Omega\}$
# - $\Gamma_{N} = \{(x, 0) \cup (x, 1) \subset \partial \Omega\}$
# - $g = \sin(5x)$
# - $f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)$
#
# ## Implementation
#
# The modules that will be used are imported:

# +
from pathlib import Path

from mpi4py import MPI
from petsc4py.PETSc import ScalarType  # type: ignore

import numpy as np

import ufl
from dolfinx import fem, io, mesh, plot
from dolfinx.fem.petsc import LinearProblem

# -

# Note that it is important to first `from mpi4py import MPI` to
# ensure that MPI is correctly initialised.

# We create a rectangular {py:class}`Mesh <dolfinx.mesh.Mesh>` using
# {py:func}`create_rectangle <dolfinx.mesh.create_rectangle>`, and
# create a finite element {py:class}`function space
# <dolfinx.fem.FunctionSpace>` $V$ on the mesh.

# +
msh = mesh.create_rectangle(
    comm=MPI.COMM_WORLD,
    points=((0.0, 0.0), (2.0, 1.0)),
    n=(32, 16),
    cell_type=mesh.CellType.triangle,
)
V = fem.functionspace(msh, ("Lagrange", 1))
# -

# The second argument to {py:func}`functionspace
# <dolfinx.fem.functionspace>` is a tuple `(family, degree)`, where
# `family` is the finite element family, and `degree` specifies the
# polynomial degree. In this case `V` is a space of continuous Lagrange
# finite elements of degree 1. For further details of how one can specify
# finite elements as tuples, see {py:class}`ElementMetaData
# <dolfinx.fem.ElementMetaData>`.
#
# To apply the Dirichlet boundary conditions, we find the mesh facets
# (entities of topological co-dimension 1) that lie on the boundary
# $\Gamma_D$ using {py:func}`locate_entities_boundary
# <dolfinx.mesh.locate_entities_boundary>`. The function is provided
# with a 'marker' function that returns `True` for points `x` on the
# boundary and `False` otherwise.

facets = mesh.locate_entities_boundary(
    msh,
    dim=(msh.topology.dim - 1),
    marker=lambda x: np.isclose(x[0], 0.0) | np.isclose(x[0], 2.0),
)

# We now find the degrees-of-freedom that are associated with the
# boundary facets using {py:func}`locate_dofs_topological
# <dolfinx.fem.locate_dofs_topological>`:

dofs = fem.locate_dofs_topological(V=V, entity_dim=1, entities=facets)

# and use {py:func}`dirichletbc <dolfinx.fem.dirichletbc>` to create a
# {py:class}`DirichletBC <dolfinx.fem.DirichletBC>` class that
# represents the boundary condition:

bc = fem.dirichletbc(value=ScalarType(0), dofs=dofs, V=V)

# Next, the variational problem is defined:

# +
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
x = ufl.SpatialCoordinate(msh)
f = 10 * ufl.exp(-((x[0] - 0.5) ** 2 + (x[1] - 0.5) ** 2) / 0.02)
g = ufl.sin(5 * x[0])
a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
L = ufl.inner(f, v) * ufl.dx + ufl.inner(g, v) * ufl.ds
# -

# A {py:class}`LinearProblem <dolfinx.fem.petsc.LinearProblem>` object is
# created that brings together the variational problem, the Dirichlet
# boundary condition, and which specifies the linear solver. In this
# case an LU solver is used, and we ask that PETSc throws an error
# if the solver does not converge. The {py:func}`solve
# <dolfinx.fem.petsc.LinearProblem.solve>` computes the solution.

# +
problem = LinearProblem(
    a,
    L,
    bcs=[bc],
    petsc_options_prefix="demo_poisson_",
    petsc_options={"ksp_type": "preonly", "pc_type": "lu", "ksp_error_if_not_converged": True},
)
uh = problem.solve()
assert isinstance(uh, fem.Function)
# -

# The solution can be written to a {py:class}`XDMFFile
# <dolfinx.io.XDMFFile>` file visualization with [ParaView](https://www.paraview.org/)
# or [VisIt](https://visit-dav.github.io/visit-website/):

# +
out_folder = Path("out_poisson")
out_folder.mkdir(parents=True, exist_ok=True)
with io.XDMFFile(msh.comm, out_folder / "poisson.xdmf", "w") as file:
    file.write_mesh(msh)
    file.write_function(uh)
# -

# and displayed using [pyvista](https://docs.pyvista.org/).

# +
try:
    import pyvista

    cells, types, x = plot.vtk_mesh(V)
    grid = pyvista.UnstructuredGrid(cells, types, x)
    grid.point_data["u"] = uh.x.array.real
    grid.set_active_scalars("u")
    plotter = pyvista.Plotter()
    plotter.add_mesh(grid, show_edges=True)
    warped = grid.warp_by_scalar()
    plotter.add_mesh(warped)
    if pyvista.OFF_SCREEN:
        plotter.screenshot(out_folder / "uh_poisson.png")
    else:
        plotter.show()
except ModuleNotFoundError:
    print("'pyvista' is required to visualise the solution.")
    print("To install pyvista with pip: 'python3 -m pip install pyvista'.")
# -