File: demo_static-condensation.py

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (307 lines) | stat: -rw-r--r-- 10,324 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.13.6
# ---

# (demo-static-condensation)=
#
# # Static condensation of linear elasticity
#
# Copyright (C) 2020  Michal Habera and Andreas Zilian
#
# ```{admonition} Download sources
# :class: download
# * {download}`Python script <./demo_static-condensation.py>`
# * {download}`Jupyter notebook <./demo_static-condensation.ipynb>`
# ```
# This demo solves a Cook's plane stress elasticity test in a mixed
# space formulation. The test is a sloped cantilever under upward
# traction force at free end. Static condensation of internal (stress)
# degrees-of-freedom is demonstrated.
#
# This demo illustrates how to:
# - Use static condensation with [numba](https://numba.pydata.org/)
#   on variational forms made with UFL.
# - Extracting JIT compiled C-kernels using {py:func}`ffcx_jit
# <dolfinx.jit.ffcx_jit>`

# This demo requires more modules than usual, as it uses `numba` for
# efficient static condensation.

# +
from pathlib import Path

from mpi4py import MPI
from petsc4py import PETSc

import cffi
import numba
import numba.core.typing.cffi_utils as cffi_support
import numpy as np

import ufl
from basix.ufl import element
from dolfinx import default_real_type, default_scalar_type, geometry
from dolfinx.fem import (
    Form,
    Function,
    IntegralType,
    dirichletbc,
    form,
    form_cpp_class,
    functionspace,
    locate_dofs_topological,
)
from dolfinx.fem.petsc import apply_lifting, assemble_matrix, assemble_vector
from dolfinx.io import XDMFFile
from dolfinx.jit import ffcx_jit
from dolfinx.mesh import locate_entities_boundary, meshtags
from ffcx.codegeneration.utils import empty_void_pointer
from ffcx.codegeneration.utils import numba_ufcx_kernel_signature as ufcx_signature

# -

rtype = default_real_type
dtype = default_scalar_type
if np.issubdtype(rtype, np.float32):  # type: ignore
    print("float32 not yet supported for this demo.")
    exit(0)

# We start by reading in the Cook's mesh [cooks_tri_mesh.xdmf](
# https://github.com/FEniCS/dolfinx/blob/main/python/demo/data/cooks_tri_mesh.xdmf)
# using {py:meth}`XDMFFile.read_mesh <dolfinx.io.XDMFFile.read_mesh>`.
# Note that the mesh is written in plain-text format, which means we use
# {py:attr}`XDMFFile.Encoding.ASCII <dolfinx.io.XDMFFile.Encoding.ASCII>`.

infile = XDMFFile(
    MPI.COMM_WORLD,
    Path(Path(__file__).parent, "data", "cooks_tri_mesh.xdmf"),
    "r",
    encoding=XDMFFile.Encoding.ASCII,
)
msh = infile.read_mesh(name="Grid")
infile.close()

# We create the Stress (Se) and displacement (Ue) elements and
# corresponding function spaces. Note that the stress element is symmetric.

gdim = msh.geometry.dim
Se = element("DG", msh.basix_cell(), 1, shape=(gdim, gdim), symmetry=True, dtype=rtype)  # type: ignore
Ue = element("Lagrange", msh.basix_cell(), 2, shape=(gdim,), dtype=rtype)  # type: ignore
S = functionspace(msh, Se)
U = functionspace(msh, Ue)

# Next, we define the trial and test functions for stress and displacement,

sigma, tau = ufl.TrialFunction(S), ufl.TestFunction(S)
u, v = ufl.TrialFunction(U), ufl.TestFunction(U)

# Locate all facets at the free end and assign them value 1. Sort the
# facet indices (requirement for constructing {py:class}`MeshTags
# <dolfinx.mesh.MeshTags>`).

tdim = msh.topology.dim
free_end_facets = np.sort(locate_entities_boundary(msh, tdim - 1, lambda x: np.isclose(x[0], 48.0)))
mt = meshtags(msh, tdim - 1, free_end_facets, 1)

# Next, we create an integration measure with the facet markers.

ds = ufl.Measure("ds", subdomain_data=mt)

# Homogeneous boundary condition in displacement

u_bc = Function(U)
u_bc.x.array[:] = 0

# Displacement {py:class}`BC <dolfinx.fem.dirichletbc>` is applied to
# the left side

left_facets = locate_entities_boundary(msh, tdim - 1, lambda x: np.isclose(x[0], 0.0))
bdofs = locate_dofs_topological(U, tdim - 1, left_facets)
bc = dirichletbc(u_bc, bdofs)

# Elastic stiffness tensor and Poisson ratio

# +
E, nu = 1.0, 1.0 / 3.0


def sigma_u(u):
    """Constitutive relation for stress-strain. Assuming plane-stress in
    XY"""
    eps = 0.5 * (ufl.grad(u) + ufl.grad(u).T)
    sigma = E / (1.0 - nu**2) * ((1.0 - nu) * eps + nu * ufl.Identity(2) * ufl.tr(eps))
    return sigma


# -

# With the definitions above, we can define the different blocks
# of the variational formulation

# +
a00 = ufl.inner(sigma, tau) * ufl.dx
a10 = -ufl.inner(sigma, ufl.grad(v)) * ufl.dx
a01 = -ufl.inner(sigma_u(u), tau) * ufl.dx

f = ufl.as_vector([0.0, 1.0 / 16])
b1 = form(-ufl.inner(f, v) * ds(1), dtype=dtype)  # type: ignore
# -

# To generate (C-code) and JIT compile the kernels, we use
# {py:func}`ffcx_jit <dolfinx.jit.ffcx_jit>` for each individual block.
# We extract the kernel function from the compiled form object by
# getting the `tabulate_tensor_{dtype}` attribute of the compiled form.

# +
ufcx00, _, _ = ffcx_jit(msh.comm, a00, form_compiler_options={"scalar_type": dtype})  # type: ignore
kernel00 = getattr(ufcx00.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}")  # type: ignore

ufcx01, _, _ = ffcx_jit(msh.comm, a01, form_compiler_options={"scalar_type": dtype})  # type: ignore
kernel01 = getattr(ufcx01.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}")  # type: ignore

ufcx10, _, _ = ffcx_jit(msh.comm, a10, form_compiler_options={"scalar_type": dtype})  # type: ignore
kernel10 = getattr(ufcx10.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}")  # type: ignore
# -

ffi = cffi.FFI()
if np.issubdtype(dtype, np.complexfloating):
    if cffi.__version_info__ > (1, 16, 99) and cffi.__version_info__ <= (1, 17, 1):
        print(
            "CFFI 1.17.0 and 1.17.1 has a bug for complex type."
            "See https://github.com/FEniCS/dolfinx/pull/3635. Exiting."
        )
        exit(0)
    cffi_support.register_type(ffi.typeof("double _Complex"), numba.types.complex128)

# Get local dofmap sizes for later local tensor tabulations

Ssize = S.element.space_dimension
Usize = U.element.space_dimension


# Next, we define a static condensation kernel that uses the
# previously defined kernels to compute the condensed local element
# tensor. The kernel is decorated with {py:func}`numba.cfunc` using the
# appropriate signature obtained from {py:func}`ufcx_signature`.`


@numba.cfunc(ufcx_signature(dtype, rtype), nopython=True)  # type: ignore
def tabulate_A(A_, w_, c_, coords_, entity_local_index, permutation=ffi.NULL, custom_data=None):
    """Element kernel that applies static condensation."""

    # Prepare target condensed local element tensor
    A = numba.carray(A_, (Usize, Usize), dtype=dtype)

    # Tabulate all sub blocks locally
    A00 = np.zeros((Ssize, Ssize), dtype=dtype)
    kernel00(
        ffi.from_buffer(A00),
        w_,
        c_,
        coords_,
        entity_local_index,
        permutation,
        empty_void_pointer(),
    )

    A01 = np.zeros((Ssize, Usize), dtype=dtype)
    kernel01(
        ffi.from_buffer(A01),
        w_,
        c_,
        coords_,
        entity_local_index,
        permutation,
        empty_void_pointer(),
    )

    A10 = np.zeros((Usize, Ssize), dtype=dtype)
    kernel10(
        ffi.from_buffer(A10),
        w_,
        c_,
        coords_,
        entity_local_index,
        permutation,
        empty_void_pointer(),
    )

    # A = - A10 * A00^{-1} * A01
    A[:, :] = -A10 @ np.linalg.solve(A00, A01)


# Prepare a {py:class}`Form<dolfinx.fem.Form>` with a condensed
# tabulation kernel. We specify the integration domains to be the
# cells owned by the current process

formtype = form_cpp_class(dtype)  # type: ignore
cells = np.arange(msh.topology.index_map(msh.topology.dim).size_local)
integrals = {IntegralType.cell: [(0, tabulate_A.address, cells, np.array([], dtype=np.int8))]}
a_cond = Form(
    formtype([U._cpp_object, U._cpp_object], integrals, [], [], False, [], mesh=msh._cpp_object)
)

# Next, we pass the compiled kernel to the standard {py:func}`
# assemble_matrix <dolfinx.fem.petsc.assemble_matrix>` function to assemble
# to the global condensed stiffness matrix. We also assemble the right-hand
# side vector using {py:func}`assemble_vector
# <dolfinx.fem.petsc.assemble_vector>` and apply the boundary conditions by
# {py:func}`applying lifting <dolfinx.fem.petsc.apply_lifting>` and
# {py:meth}`set bc<dolfinx.fem.DirichletBC.set>`.

A_cond = assemble_matrix(a_cond, bcs=[bc])
A_cond.assemble()
b = assemble_vector(b1)
apply_lifting(b, [a_cond], bcs=[[bc]])
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)  # type: ignore
bc.set(b)

# We use a {py:class}`PETSc.KSP <petsc4py.PETSc.KSP>` solver to solve the
# condensed linear system. The solution is stored in a
# {py:class}`Function<dolfinx.fem.Function>`, while we pass the
# underlying data wrapped as a {py:class}`PETSc.Vec <petsc4py.PETSc.Vec>`
# to the solver by calling {py:meth}`petsc_vec
# <dolfinx.la.Vector.petsc_vec>` on the
# {py:meth}`vector <dolfinx.fem.Function.x>` attribute of the function.

uc = Function(U, name="u_from_condensation")
solver = PETSc.KSP().create(A_cond.getComm())  # type: ignore
solver.setOperators(A_cond)
solver.solve(b, uc.x.petsc_vec)
solver.destroy()

# We verify the condensed solution by comparing against a standard,
# pure displacement based formulation

a = form(-ufl.inner(sigma_u(u), ufl.grad(v)) * ufl.dx)
A = assemble_matrix(a, bcs=[bc])
A.assemble()

# Create {py:class}`BoundingBoxTree <dolfinx.geometry.BoundingBoxTree>`
# using {py:meth}`bb_tree <dolfinx.geometry.bb_tree>` constructor
# for efficient computation of the ownership of a set of evaluation points

bb_tree = geometry.bb_tree(msh, tdim, padding=0.0)

# Check against standard table value

p = np.array([[48.0, 52.0, 0.0]], dtype=np.float64)
cell_candidates = geometry.compute_collisions_points(bb_tree, p)
cells = geometry.compute_colliding_cells(msh, cell_candidates, p).array

uc.x.scatter_forward()
if len(cells) > 0:
    value = uc.eval(p, cells[0])
    print(value[1])
    assert np.isclose(value[1], 23.95, rtol=1.0e-2)

# Check the equality of displacement based and mixed condensed global
# matrices, i.e. check that condensation is exact

assert np.isclose((A - A_cond).norm(), 0.0)