1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.13.6
# ---
# (demo-static-condensation)=
#
# # Static condensation of linear elasticity
#
# Copyright (C) 2020 Michal Habera and Andreas Zilian
#
# ```{admonition} Download sources
# :class: download
# * {download}`Python script <./demo_static-condensation.py>`
# * {download}`Jupyter notebook <./demo_static-condensation.ipynb>`
# ```
# This demo solves a Cook's plane stress elasticity test in a mixed
# space formulation. The test is a sloped cantilever under upward
# traction force at free end. Static condensation of internal (stress)
# degrees-of-freedom is demonstrated.
#
# This demo illustrates how to:
# - Use static condensation with [numba](https://numba.pydata.org/)
# on variational forms made with UFL.
# - Extracting JIT compiled C-kernels using {py:func}`ffcx_jit
# <dolfinx.jit.ffcx_jit>`
# This demo requires more modules than usual, as it uses `numba` for
# efficient static condensation.
# +
from pathlib import Path
from mpi4py import MPI
from petsc4py import PETSc
import cffi
import numba
import numba.core.typing.cffi_utils as cffi_support
import numpy as np
import ufl
from basix.ufl import element
from dolfinx import default_real_type, default_scalar_type, geometry
from dolfinx.fem import (
Form,
Function,
IntegralType,
dirichletbc,
form,
form_cpp_class,
functionspace,
locate_dofs_topological,
)
from dolfinx.fem.petsc import apply_lifting, assemble_matrix, assemble_vector
from dolfinx.io import XDMFFile
from dolfinx.jit import ffcx_jit
from dolfinx.mesh import locate_entities_boundary, meshtags
from ffcx.codegeneration.utils import empty_void_pointer
from ffcx.codegeneration.utils import numba_ufcx_kernel_signature as ufcx_signature
# -
rtype = default_real_type
dtype = default_scalar_type
if np.issubdtype(rtype, np.float32): # type: ignore
print("float32 not yet supported for this demo.")
exit(0)
# We start by reading in the Cook's mesh [cooks_tri_mesh.xdmf](
# https://github.com/FEniCS/dolfinx/blob/main/python/demo/data/cooks_tri_mesh.xdmf)
# using {py:meth}`XDMFFile.read_mesh <dolfinx.io.XDMFFile.read_mesh>`.
# Note that the mesh is written in plain-text format, which means we use
# {py:attr}`XDMFFile.Encoding.ASCII <dolfinx.io.XDMFFile.Encoding.ASCII>`.
infile = XDMFFile(
MPI.COMM_WORLD,
Path(Path(__file__).parent, "data", "cooks_tri_mesh.xdmf"),
"r",
encoding=XDMFFile.Encoding.ASCII,
)
msh = infile.read_mesh(name="Grid")
infile.close()
# We create the Stress (Se) and displacement (Ue) elements and
# corresponding function spaces. Note that the stress element is symmetric.
gdim = msh.geometry.dim
Se = element("DG", msh.basix_cell(), 1, shape=(gdim, gdim), symmetry=True, dtype=rtype) # type: ignore
Ue = element("Lagrange", msh.basix_cell(), 2, shape=(gdim,), dtype=rtype) # type: ignore
S = functionspace(msh, Se)
U = functionspace(msh, Ue)
# Next, we define the trial and test functions for stress and displacement,
sigma, tau = ufl.TrialFunction(S), ufl.TestFunction(S)
u, v = ufl.TrialFunction(U), ufl.TestFunction(U)
# Locate all facets at the free end and assign them value 1. Sort the
# facet indices (requirement for constructing {py:class}`MeshTags
# <dolfinx.mesh.MeshTags>`).
tdim = msh.topology.dim
free_end_facets = np.sort(locate_entities_boundary(msh, tdim - 1, lambda x: np.isclose(x[0], 48.0)))
mt = meshtags(msh, tdim - 1, free_end_facets, 1)
# Next, we create an integration measure with the facet markers.
ds = ufl.Measure("ds", subdomain_data=mt)
# Homogeneous boundary condition in displacement
u_bc = Function(U)
u_bc.x.array[:] = 0
# Displacement {py:class}`BC <dolfinx.fem.dirichletbc>` is applied to
# the left side
left_facets = locate_entities_boundary(msh, tdim - 1, lambda x: np.isclose(x[0], 0.0))
bdofs = locate_dofs_topological(U, tdim - 1, left_facets)
bc = dirichletbc(u_bc, bdofs)
# Elastic stiffness tensor and Poisson ratio
# +
E, nu = 1.0, 1.0 / 3.0
def sigma_u(u):
"""Constitutive relation for stress-strain. Assuming plane-stress in
XY"""
eps = 0.5 * (ufl.grad(u) + ufl.grad(u).T)
sigma = E / (1.0 - nu**2) * ((1.0 - nu) * eps + nu * ufl.Identity(2) * ufl.tr(eps))
return sigma
# -
# With the definitions above, we can define the different blocks
# of the variational formulation
# +
a00 = ufl.inner(sigma, tau) * ufl.dx
a10 = -ufl.inner(sigma, ufl.grad(v)) * ufl.dx
a01 = -ufl.inner(sigma_u(u), tau) * ufl.dx
f = ufl.as_vector([0.0, 1.0 / 16])
b1 = form(-ufl.inner(f, v) * ds(1), dtype=dtype) # type: ignore
# -
# To generate (C-code) and JIT compile the kernels, we use
# {py:func}`ffcx_jit <dolfinx.jit.ffcx_jit>` for each individual block.
# We extract the kernel function from the compiled form object by
# getting the `tabulate_tensor_{dtype}` attribute of the compiled form.
# +
ufcx00, _, _ = ffcx_jit(msh.comm, a00, form_compiler_options={"scalar_type": dtype}) # type: ignore
kernel00 = getattr(ufcx00.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}") # type: ignore
ufcx01, _, _ = ffcx_jit(msh.comm, a01, form_compiler_options={"scalar_type": dtype}) # type: ignore
kernel01 = getattr(ufcx01.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}") # type: ignore
ufcx10, _, _ = ffcx_jit(msh.comm, a10, form_compiler_options={"scalar_type": dtype}) # type: ignore
kernel10 = getattr(ufcx10.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}") # type: ignore
# -
ffi = cffi.FFI()
if np.issubdtype(dtype, np.complexfloating):
if cffi.__version_info__ > (1, 16, 99) and cffi.__version_info__ <= (1, 17, 1):
print(
"CFFI 1.17.0 and 1.17.1 has a bug for complex type."
"See https://github.com/FEniCS/dolfinx/pull/3635. Exiting."
)
exit(0)
cffi_support.register_type(ffi.typeof("double _Complex"), numba.types.complex128)
# Get local dofmap sizes for later local tensor tabulations
Ssize = S.element.space_dimension
Usize = U.element.space_dimension
# Next, we define a static condensation kernel that uses the
# previously defined kernels to compute the condensed local element
# tensor. The kernel is decorated with {py:func}`numba.cfunc` using the
# appropriate signature obtained from {py:func}`ufcx_signature`.`
@numba.cfunc(ufcx_signature(dtype, rtype), nopython=True) # type: ignore
def tabulate_A(A_, w_, c_, coords_, entity_local_index, permutation=ffi.NULL, custom_data=None):
"""Element kernel that applies static condensation."""
# Prepare target condensed local element tensor
A = numba.carray(A_, (Usize, Usize), dtype=dtype)
# Tabulate all sub blocks locally
A00 = np.zeros((Ssize, Ssize), dtype=dtype)
kernel00(
ffi.from_buffer(A00),
w_,
c_,
coords_,
entity_local_index,
permutation,
empty_void_pointer(),
)
A01 = np.zeros((Ssize, Usize), dtype=dtype)
kernel01(
ffi.from_buffer(A01),
w_,
c_,
coords_,
entity_local_index,
permutation,
empty_void_pointer(),
)
A10 = np.zeros((Usize, Ssize), dtype=dtype)
kernel10(
ffi.from_buffer(A10),
w_,
c_,
coords_,
entity_local_index,
permutation,
empty_void_pointer(),
)
# A = - A10 * A00^{-1} * A01
A[:, :] = -A10 @ np.linalg.solve(A00, A01)
# Prepare a {py:class}`Form<dolfinx.fem.Form>` with a condensed
# tabulation kernel. We specify the integration domains to be the
# cells owned by the current process
formtype = form_cpp_class(dtype) # type: ignore
cells = np.arange(msh.topology.index_map(msh.topology.dim).size_local)
integrals = {IntegralType.cell: [(0, tabulate_A.address, cells, np.array([], dtype=np.int8))]}
a_cond = Form(
formtype([U._cpp_object, U._cpp_object], integrals, [], [], False, [], mesh=msh._cpp_object)
)
# Next, we pass the compiled kernel to the standard {py:func}`
# assemble_matrix <dolfinx.fem.petsc.assemble_matrix>` function to assemble
# to the global condensed stiffness matrix. We also assemble the right-hand
# side vector using {py:func}`assemble_vector
# <dolfinx.fem.petsc.assemble_vector>` and apply the boundary conditions by
# {py:func}`applying lifting <dolfinx.fem.petsc.apply_lifting>` and
# {py:meth}`set bc<dolfinx.fem.DirichletBC.set>`.
A_cond = assemble_matrix(a_cond, bcs=[bc])
A_cond.assemble()
b = assemble_vector(b1)
apply_lifting(b, [a_cond], bcs=[[bc]])
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) # type: ignore
bc.set(b)
# We use a {py:class}`PETSc.KSP <petsc4py.PETSc.KSP>` solver to solve the
# condensed linear system. The solution is stored in a
# {py:class}`Function<dolfinx.fem.Function>`, while we pass the
# underlying data wrapped as a {py:class}`PETSc.Vec <petsc4py.PETSc.Vec>`
# to the solver by calling {py:meth}`petsc_vec
# <dolfinx.la.Vector.petsc_vec>` on the
# {py:meth}`vector <dolfinx.fem.Function.x>` attribute of the function.
uc = Function(U, name="u_from_condensation")
solver = PETSc.KSP().create(A_cond.getComm()) # type: ignore
solver.setOperators(A_cond)
solver.solve(b, uc.x.petsc_vec)
solver.destroy()
# We verify the condensed solution by comparing against a standard,
# pure displacement based formulation
a = form(-ufl.inner(sigma_u(u), ufl.grad(v)) * ufl.dx)
A = assemble_matrix(a, bcs=[bc])
A.assemble()
# Create {py:class}`BoundingBoxTree <dolfinx.geometry.BoundingBoxTree>`
# using {py:meth}`bb_tree <dolfinx.geometry.bb_tree>` constructor
# for efficient computation of the ownership of a set of evaluation points
bb_tree = geometry.bb_tree(msh, tdim, padding=0.0)
# Check against standard table value
p = np.array([[48.0, 52.0, 0.0]], dtype=np.float64)
cell_candidates = geometry.compute_collisions_points(bb_tree, p)
cells = geometry.compute_colliding_cells(msh, cell_candidates, p).array
uc.x.scatter_forward()
if len(cells) > 0:
value = uc.eval(p, cells[0])
print(value[1])
assert np.isclose(value[1], 23.95, rtol=1.0e-2)
# Check the equality of displacement based and mixed condensed global
# matrices, i.e. check that condensation is exact
assert np.isclose((A - A_cond).norm(), 0.0)
|