1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.13.6
# ---
# # Solving PDEs with different scalar (float) types
#
# ```{admonition} Download sources
# :class: download
# * {download}`Python script <./demo_types.py>`
# * {download}`Jupyter notebook <./demo_types.ipynb>`
# ```
# This demo shows:
#
# - How to solve problems using different scalar types, .e.g. single or
# double precision, or complex numbers
# - Interfacing with [SciPy](https://scipy.org/) sparse linear algebra
# functionality
# +
import sys
from pathlib import Path
from mpi4py import MPI
import numpy as np
import scipy.sparse
import scipy.sparse.linalg
import ufl
from dolfinx import fem, la, mesh, plot
# -
# SciPy solvers do not support MPI, so all computations will be
# performed on a single MPI rank
# +
comm = MPI.COMM_SELF
# -
# We create an output directory for storing results and figures
out_folder = Path("out_types")
out_folder.mkdir(parents=True, exist_ok=True)
# Create a function that solves the Poisson equation using different
# precision float and complex scalar types for the finite element
# solution.
def display_scalar(u, name, filter=np.real):
"""Plot the solution using pyvista"""
try:
import pyvista
cells, types, x = plot.vtk_mesh(u.function_space)
grid = pyvista.UnstructuredGrid(cells, types, x)
grid.point_data["u"] = filter(u.x.array)
grid.set_active_scalars("u")
plotter = pyvista.Plotter()
plotter.add_mesh(grid, show_edges=True)
plotter.add_mesh(grid.warp_by_scalar())
plotter.add_title(f"{name}: real" if filter is np.real else f"{name}: imag")
if pyvista.OFF_SCREEN:
plotter.screenshot(out_folder / f"u_{'real' if filter is np.real else 'imag'}.png")
else:
plotter.show()
except ModuleNotFoundError:
print("'pyvista' is required to visualise the solution")
def display_vector(u, name, filter=np.real):
"""Plot the solution using pyvista"""
try:
import pyvista
V = u.function_space
cells, types, x = plot.vtk_mesh(V)
grid = pyvista.UnstructuredGrid(cells, types, x)
bs = V.dofmap.index_map_bs
grid.point_data["u"] = filter(np.insert(u.x.array.reshape(x.shape[0], bs), bs, 0, axis=1))
plotter = pyvista.Plotter()
plotter.add_mesh(grid.warp_by_scalar(), show_edges=True)
plotter.add_title(f"{name}: real" if filter is np.real else f"{name}: imag")
if pyvista.OFF_SCREEN:
plotter.screenshot(out_folder / f"u_{'real' if filter is np.real else 'imag'}.png")
else:
plotter.show()
except ModuleNotFoundError:
print("'pyvista' is required to visualise the solution")
def poisson(dtype):
"""Poisson problem solver
Args:
dtype: Scalar type to use.
"""
# Create a mesh and locate facets by a geometric condition
msh = mesh.create_rectangle(
comm=comm,
points=((0.0, 0.0), (2.0, 1.0)),
n=(32, 16),
cell_type=mesh.CellType.triangle,
dtype=np.real(dtype(0)).dtype,
)
facets = mesh.locate_entities_boundary(
msh, dim=1, marker=lambda x: np.isclose(x[0], 0.0) | np.isclose(x[0], 2.0)
)
# Define a variational problem.
V = fem.functionspace(msh, ("Lagrange", 1))
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
x = ufl.SpatialCoordinate(msh)
fr = 10 * ufl.exp(-((x[0] - 0.5) ** 2 + (x[1] - 0.5) ** 2) / 0.02)
fc = ufl.sin(2 * np.pi * x[0]) + 10 * ufl.sin(4 * np.pi * x[1]) * 1j
gr = ufl.sin(5 * x[0])
gc = ufl.sin(5 * x[0]) * 1j
a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
L = ufl.inner(fr + fc, v) * ufl.dx + ufl.inner(gr + gc, v) * ufl.ds
# In preparation for constructing Dirichlet boundary conditions, locate
# facets on the constrained boundary and the corresponding
# degrees-of-freedom.
dofs = fem.locate_dofs_topological(V=V, entity_dim=1, entities=facets)
# Process forms. This will compile the forms for the requested type.
a0 = fem.form(a, dtype=dtype)
if np.issubdtype(dtype, np.complexfloating):
L0 = fem.form(L, dtype=dtype)
else:
L0 = fem.form(ufl.replace(L, {fc: 0, gc: 0}), dtype=dtype)
# Create a Dirichlet boundary condition
bc = fem.dirichletbc(value=dtype(0), dofs=dofs, V=V)
# Assemble forms
A = fem.assemble_matrix(a0, [bc])
A.scatter_reverse()
b = fem.assemble_vector(L0)
fem.apply_lifting(b.array, [a0], bcs=[[bc]])
b.scatter_reverse(la.InsertMode.add)
bc.set(b.array)
# Create a SciPy CSR matrix that shares data with A and solve
As = A.to_scipy()
uh = fem.Function(V, dtype=dtype)
uh.x.array[:] = scipy.sparse.linalg.spsolve(As, b.array)
return uh
# Create a function that solves the linearised elasticity equation using
# different precision float and complex scalar types for the finite
# element solution.
def elasticity(dtype) -> fem.Function:
"""Linearised elasticity problem solver."""
# Create a mesh and locate facets by a geometric condition
msh = mesh.create_rectangle(
comm=comm,
points=((0.0, 0.0), (2.0, 1.0)),
n=(32, 16),
cell_type=mesh.CellType.triangle,
dtype=np.real(dtype(0)).dtype,
)
facets = mesh.locate_entities_boundary(
msh, dim=1, marker=lambda x: np.isclose(x[0], 0.0) | np.isclose(x[0], 2.0)
)
# Define the variational problem.
gdim = msh.geometry.dim
V = fem.functionspace(msh, ("Lagrange", 1, (gdim,)))
ω, ρ = 300.0, 10.0
x = ufl.SpatialCoordinate(msh)
f = ufl.as_vector((ρ * ω**2 * x[0], ρ * ω**2 * x[1]))
E, ν = 1.0e6, 0.3
μ, λ = E / (2.0 * (1.0 + ν)), E * ν / ((1.0 + ν) * (1.0 - 2.0 * ν))
def σ(v):
"""Return an expression for the stress σ given a displacement
field"""
return 2.0 * μ * ufl.sym(ufl.grad(v)) + λ * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(
len(v)
)
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
a = ufl.inner(σ(u), ufl.grad(v)) * ufl.dx
L = ufl.inner(f, v) * ufl.dx
dofs = fem.locate_dofs_topological(V=V, entity_dim=1, entities=facets)
# Process forms. This will compile the forms for the requested type.
a0, L0 = fem.form(a, dtype=dtype), fem.form(L, dtype=dtype)
# Create a Dirichlet boundary condition
bc = fem.dirichletbc(np.zeros(2, dtype=dtype), dofs, V=V)
# Assemble forms (CSR matrix)
A = fem.assemble_matrix(a0, [bc])
A.scatter_reverse()
b = fem.assemble_vector(L0)
fem.apply_lifting(b.array, [a0], bcs=[[bc]])
b.scatter_reverse(la.InsertMode.add)
bc.set(b.array)
# Create a SciPy CSR matrix that shares data with A and solve
As = A.to_scipy()
uh = fem.Function(V, dtype=dtype)
uh.x.array[:] = scipy.sparse.linalg.spsolve(As, b.array)
return uh
# Solve problems for different types
uh = poisson(dtype=np.float32)
uh = poisson(dtype=np.float64)
if not sys.platform.startswith("win32"):
uh = poisson(dtype=np.complex64)
uh = poisson(dtype=np.complex128)
display_scalar(uh, "poisson", np.real)
display_scalar(uh, "poisson", np.imag)
uh = elasticity(dtype=np.float32)
uh = elasticity(dtype=np.float64)
if not sys.platform.startswith("win32"):
uh = elasticity(dtype=np.complex64)
uh = elasticity(dtype=np.complex128)
display_vector(uh, "elasticity", np.real)
|