1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
|
# Copyright (C) 2009-2024 Chris N. Richardson, Garth N. Wells,
# Michal Habera and Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Finite element function spaces and functions."""
from __future__ import annotations
import typing
from collections.abc import Callable, Sequence
from functools import cached_property, singledispatch
import numpy as np
import numpy.typing as npt
import basix
import ufl
from dolfinx import cpp as _cpp
from dolfinx import default_scalar_type, jit, la
from dolfinx.fem.dofmap import DofMap
from dolfinx.fem.element import FiniteElement, finiteelement
from dolfinx.geometry import PointOwnershipData
if typing.TYPE_CHECKING:
from mpi4py import MPI as _MPI
from dolfinx.mesh import Mesh
class Constant(ufl.Constant):
_cpp_object: (
_cpp.fem.Constant_complex64
| _cpp.fem.Constant_complex128
| _cpp.fem.Constant_float32
| _cpp.fem.Constant_float64
)
def __init__(
self,
domain,
c: float | np.floating | complex | np.complexfloating | Sequence | np.ndarray,
):
"""A constant with respect to a domain.
Args:
domain: DOLFINx or UFL mesh
c: Value of the constant.
"""
c = np.asarray(c)
super().__init__(domain, c.shape)
try:
if np.issubdtype(c.dtype, np.complex64):
self._cpp_object = _cpp.fem.Constant_complex64(c)
elif np.issubdtype(c.dtype, np.complex128):
self._cpp_object = _cpp.fem.Constant_complex128(c)
elif np.issubdtype(c.dtype, np.float32):
self._cpp_object = _cpp.fem.Constant_float32(c)
elif np.issubdtype(c.dtype, np.float64):
self._cpp_object = _cpp.fem.Constant_float64(c)
else:
raise RuntimeError("Unsupported dtype")
except AttributeError:
raise AttributeError("Constant value must have a dtype attribute.")
@property
def value(self):
"""The value of the constant"""
return self._cpp_object.value
@value.setter
def value(self, v):
np.copyto(self._cpp_object.value, np.asarray(v))
@property
def dtype(self) -> np.dtype:
return np.dtype(self._cpp_object.dtype)
def __float__(self):
if self.ufl_shape or self.ufl_free_indices:
raise TypeError("Cannot evaluate a nonscalar expression to a scalar value.")
else:
return float(self.value)
def __complex__(self):
if self.ufl_shape or self.ufl_free_indices:
raise TypeError("Cannot evaluate a nonscalar expression to a scalar value.")
else:
return complex(self.value)
class Expression:
def __init__(
self,
e: ufl.core.expr.Expr,
X: np.ndarray,
comm: _MPI.Comm | None = None,
form_compiler_options: dict | None = None,
jit_options: dict | None = None,
dtype: npt.DTypeLike | None = None,
):
"""Create a DOLFINx Expression.
Represents a mathematical expression evaluated at a pre-defined
set of points on the reference cell. This class closely follows
the concept of a UFC Expression.
This functionality can be used to evaluate a gradient of a
Function at the quadrature points in all cells. This evaluated
gradient can then be used as input to a non-FEniCS function that
calculates a material constitutive model.
Args:
e: UFL expression.
X: Array of points of shape ``(num_points, tdim)`` on the
reference element.
comm: Communicator that the Expression is defined on.
form_compiler_options: Options used in FFCx compilation of
this Expression. Run ``ffcx --help`` in the commandline
to see all available options.
jit_options: Options controlling JIT compilation of C code.
Note:
This wrapper is responsible for the FFCx compilation of the
UFL Expr and attaching the correct data to the underlying
C++ Expression.
"""
assert X.ndim < 3
num_points = X.shape[0] if X.ndim == 2 else 1
_X = np.reshape(X, (num_points, -1))
# Get MPI communicator
if comm is None:
try:
mesh = ufl.domain.extract_unique_domain(e).ufl_cargo()
comm = mesh.comm
except AttributeError:
print(
"Could not extract MPI communicator for Expression. "
+ "Maybe you need to pass a communicator?"
)
raise
# Attempt to deduce dtype
if dtype is None:
dtype = getattr(e, "dtype", default_scalar_type)
# Compile UFL expression with JIT
if form_compiler_options is None:
form_compiler_options = dict()
form_compiler_options["scalar_type"] = dtype
self._ufcx_expression, module, self._code = jit.ffcx_jit(
comm, (e, _X), form_compiler_options=form_compiler_options, jit_options=jit_options
)
self._ufl_expression = e
# Prepare coefficients data. For every coefficient in expression
# take its C++ object.
original_coefficients = ufl.algorithms.extract_coefficients(e)
coeffs = [
original_coefficients[
self._ufcx_expression.original_coefficient_positions[i]
]._cpp_object
for i in range(self._ufcx_expression.num_coefficients)
]
ufl_constants = ufl.algorithms.analysis.extract_constants(e)
constants = [constant._cpp_object for constant in ufl_constants]
arguments = ufl.algorithms.extract_arguments(e)
if len(arguments) == 0:
self._argument_space = None
elif len(arguments) == 1:
self._argument_space = arguments[0].ufl_function_space()._cpp_object
else:
raise RuntimeError("Expressions with more that one Argument not allowed.")
def _create_expression(dtype):
if np.issubdtype(dtype, np.float32):
return _cpp.fem.create_expression_float32
elif np.issubdtype(dtype, np.float64):
return _cpp.fem.create_expression_float64
elif np.issubdtype(dtype, np.complex64):
return _cpp.fem.create_expression_complex64
elif np.issubdtype(dtype, np.complex128):
return _cpp.fem.create_expression_complex128
else:
raise NotImplementedError(f"Type {dtype} not supported.")
ffi = module.ffi
self._cpp_object = _create_expression(dtype)(
ffi.cast("uintptr_t", ffi.addressof(self._ufcx_expression)),
coeffs,
constants,
self.argument_space,
)
def eval(
self,
mesh: Mesh,
entities: np.ndarray,
values: np.ndarray | None = None,
) -> np.ndarray:
"""Evaluate Expression on entities.
Args:
mesh: Mesh to evaluate Expression on.
entities: Entities to evaluate the Expression over. For
cells, it is a list of cell indices. For facets, it is a
2D array of (cell index, local facet index).
values: Array to fill with evaluated values. If ``None``,
storage will be allocated. Otherwise it must have shape
``(entities.shape[0], num_points, *value_shape)`` if
there is not argument function and shape
``(entities.shape[0], num_points, *value_shape,
argument_space_dim)`` if the Expression does have an
argument function.
Returns:
Expression evaluated at points for ``entities``. Shape is
``(entities.shape[0], num_points, *value_shape)`` if there
is no argument function, or shape is ``(entities.shape[0],
num_points, *value_shape, argument_space_dim)`` if the
Expression does have an argument function.
"""
_entities = np.asarray(entities, dtype=np.int32)
if (tdim := mesh.topology.dim) != (expr_dim := self._cpp_object.X().shape[1]):
assert expr_dim == tdim - 1
assert entities.ndim == 2, (
"entities list should have two dimensions for expression evaluation on facets."
)
if self.argument_space is None:
values_shape = (_entities.shape[0], self.X().shape[0], *self.value_shape)
else:
values_shape = (
_entities.shape[0],
self.X().shape[0],
*self.value_shape,
self.argument_space.element.space_dimension,
)
# Allocate memory for result if u was not provided
if values is None:
values = np.zeros(values_shape, dtype=self.dtype)
else:
if values.shape != values_shape:
raise TypeError("Passed values array does not have correct shape.")
if values.dtype != self.dtype:
raise TypeError("Passed values array does not have correct dtype.")
constants = _cpp.fem.pack_constants(self._cpp_object)
coeffs = _cpp.fem.pack_coefficients(self._cpp_object, _entities)
_cpp.fem.tabulate_expression(
values, self._cpp_object, constants, coeffs, mesh._cpp_object, _entities
)
return values
def X(self) -> np.ndarray:
"""Evaluation points on the reference cell"""
return self._cpp_object.X()
@property
def ufl_expression(self):
"""Original UFL Expression."""
return self._ufl_expression
@property
def value_shape(self) -> np.ndarray:
"""Value shape of the Expression."""
return self._cpp_object.value_shape
@property
def value_size(self) -> int:
"""Value size of the expression."""
return self._cpp_object.value_size
@property
def argument_space(self) -> FunctionSpace | None:
"""Argument function space if Expression has argument."""
return self._argument_space
@property
def ufcx_expression(self):
"""The compiled ufcx_expression object."""
return self._ufcx_expression
@property
def code(self) -> str:
"""C code strings."""
return self._code
@property
def dtype(self) -> np.dtype:
return np.dtype(self._cpp_object.dtype)
class Function(ufl.Coefficient):
"""A finite element function that is represented by a function space
(domain, element and dofmap) and a vector holding the
degrees-of-freedom."""
_cpp_object: (
_cpp.fem.Function_complex64
| _cpp.fem.Function_complex128
| _cpp.fem.Function_float32
| _cpp.fem.Function_float64
)
def __init__(
self,
V: FunctionSpace,
x: la.Vector | None = None,
name: str | None = None,
dtype: npt.DTypeLike | None = None,
):
"""Initialize a finite element Function.
Args:
V: The function space that the Function is defined on.
x: Function degree-of-freedom vector. Typically required
only when reading a saved Function from file.
name: Function name.
dtype: Scalar type. Is not set, the DOLFINx default scalar
type is used.
"""
if x is not None:
if dtype is None:
dtype = x.array.dtype
else:
assert x.array.dtype == dtype, "Incompatible Vector and dtype."
else:
if dtype is None:
dtype = default_scalar_type
assert np.issubdtype(V.element.dtype, np.dtype(dtype).type(0).real.dtype), (
"Incompatible FunctionSpace dtype and requested dtype."
)
# Create cpp Function
def functiontype(dtype):
if np.issubdtype(dtype, np.float32):
return _cpp.fem.Function_float32
elif np.issubdtype(dtype, np.float64):
return _cpp.fem.Function_float64
elif np.issubdtype(dtype, np.complex64):
return _cpp.fem.Function_complex64
elif np.issubdtype(dtype, np.complex128):
return _cpp.fem.Function_complex128
else:
raise NotImplementedError(f"Type {dtype} not supported.")
if x is not None:
self._cpp_object = functiontype(dtype)(V._cpp_object, x._cpp_object) # type: ignore
else:
self._cpp_object = functiontype(dtype)(V._cpp_object) # type: ignore
# Initialize the ufl.FunctionSpace
super().__init__(V.ufl_function_space())
# Set name
if name is None:
self.name = "f"
else:
self.name = name
# Store DOLFINx FunctionSpace object
self._V = V
# Store Python wrapper around the underlying Vector
self._x = la.Vector(self._cpp_object.x)
@property
def function_space(self) -> FunctionSpace:
"""The FunctionSpace that the Function is defined on."""
return self._V
def eval(self, x: npt.ArrayLike, cells: npt.ArrayLike, u=None) -> np.ndarray:
"""Evaluate Function at points x.
Points where x has shape (num_points, 3), and cells has shape
(num_points,) and cell[i] is the index of the cell containing
point x[i]. If the cell index is negative the point is ignored.
"""
# Make sure input coordinates are a NumPy array
_x = np.asarray(x, dtype=self._V.mesh.geometry.x.dtype)
assert _x.ndim < 3
if len(_x) == 0:
_x = np.zeros((0, 3), dtype=self._V.mesh.geometry.x.dtype)
else:
shape0 = _x.shape[0] if _x.ndim == 2 else 1
_x = np.reshape(_x, (shape0, -1))
num_points = _x.shape[0]
if _x.shape[1] != 3:
raise ValueError("Coordinate(s) for Function evaluation must have length 3.")
# Make sure cells are a NumPy array
_cells = np.asarray(cells, dtype=np.int32)
assert _cells.ndim < 2
num_points_c = _cells.shape[0] if _cells.ndim == 1 else 1
_cells = np.reshape(_cells, num_points_c)
# Allocate memory for return value if not provided
if u is None:
value_size = self._V.value_size
u = np.empty((num_points, value_size), self.dtype)
self._cpp_object.eval(_x, _cells, u) # type: ignore
if num_points == 1:
u = np.reshape(u, (-1,))
return u
def interpolate_nonmatching(
self, u0: Function, cells: npt.NDArray[np.int32], interpolation_data: PointOwnershipData
) -> None:
"""Interpolate a Function defined on one mesh to a function
defined on a different mesh.
Args:
u0: The Function to interpolate.
cells: The cells to interpolate over. If ``None`` then all
cells are interpolated over.
interpolation_data: Data needed to interpolate functions
defined on other meshes. Created by
:func:`dolfinx.fem.create_interpolation_data`.
"""
self._cpp_object.interpolate(u0._cpp_object, cells, interpolation_data._cpp_object) # type: ignore
def interpolate(
self,
u0: Callable | Expression | Function,
cells0: np.ndarray | None = None,
cells1: np.ndarray | None = None,
) -> None:
"""Interpolate an expression.
Args:
u0: Callable function, Expression or Function to
interpolate.
cells0: Cells in mesh associated with ``u0`` to interpolate
over. If ``None`` then all cells are interpolated over.
cells1: Cells in the mesh associated with ``self`` to
interpolate over. If ``None``, then taken to be the same
cells as ``cells0``. If ``cells1`` is not ``None``, then
it must have the same length as ``cells0``.
"""
if cells0 is None:
mesh = self.function_space.mesh
map = mesh.topology.index_map(mesh.topology.dim)
cells0 = np.arange(map.size_local + map.num_ghosts, dtype=np.int32)
if cells1 is None:
cells1 = np.arange(0, dtype=np.int32)
@singledispatch
def _interpolate(u0):
"""Interpolate a cpp.fem.Function."""
self._cpp_object.interpolate(u0, cells0, cells1) # type: ignore
@_interpolate.register(Function)
def _(u0: Function):
"""Interpolate a fem.Function."""
self._cpp_object.interpolate(u0._cpp_object, cells0, cells1) # type: ignore
@_interpolate.register(int)
def _(u0_ptr: int):
"""Interpolate using a pointer to a function f(x)."""
self._cpp_object.interpolate_ptr(u0_ptr, cells0) # type: ignore
@_interpolate.register(Expression)
def _(e0: Expression):
"""Interpolate a fem.Expression."""
self._cpp_object.interpolate(e0._cpp_object, cells0, cells1) # type: ignore
try:
# u is a Function or Expression (or pointer to one)
_interpolate(u0)
except TypeError:
# u0 is callable
assert callable(u0)
x = _cpp.fem.interpolation_coords(
self._V.element._cpp_object, self._V.mesh.geometry._cpp_object, cells0
)
self._cpp_object.interpolate(np.asarray(u0(x), dtype=self.dtype), cells0) # type: ignore
def copy(self) -> Function:
"""Create a copy of the Function.
The function space is shared and the degree-of-freedom vector is
copied.
Returns:
A new Function with a copy of the degree-of-freedom vector.
"""
return Function(
self.function_space, la.Vector(type(self.x._cpp_object)(self.x._cpp_object))
)
@property
def x(self) -> la.Vector:
"""Vector holding the degrees-of-freedom."""
return self._x
@property
def dtype(self) -> np.dtype:
return np.dtype(self._cpp_object.x.array.dtype)
@property
def name(self) -> str:
"""Name of the Function."""
return self._cpp_object.name # type: ignore
@name.setter
def name(self, name):
self._cpp_object.name = name
def __str__(self):
"""Pretty print representation."""
return self.name
def sub(self, i: int) -> Function:
"""Return a sub-function (a view into the ``Function``).
Sub-functions are indexed ``i = 0, ..., N-1``, where ``N`` is
the number of sub-spaces.
Args:
i: Index of the sub-function to extract.
Returns:
A view into the parent ``Function``.
Note:
If the sub-Function is re-used, for performance reasons the
returned ``Function`` should be stored by the caller to
avoid repeated re-computation of the subspace.
"""
return Function(self._V.sub(i), self.x, name=f"{self!s}_{i}")
def split(self) -> tuple[Function, ...]:
"""Extract (any) sub-functions.
A sub-function can be extracted from a discrete function that is
in a mixed, vector, or tensor FunctionSpace. The sub-function
resides in the subspace of the mixed space.
Returns:
First level of subspaces of the function space.
"""
num_sub_spaces = self.function_space.num_sub_spaces
if num_sub_spaces == 1:
raise RuntimeError("No subfunctions to extract")
return tuple(self.sub(i) for i in range(num_sub_spaces))
def collapse(self) -> Function:
u_collapsed = self._cpp_object.collapse() # type: ignore
V_collapsed = FunctionSpace(
self.function_space._mesh,
self.ufl_element(), # type: ignore
u_collapsed.function_space,
)
return Function(V_collapsed, la.Vector(u_collapsed.x))
class ElementMetaData(typing.NamedTuple):
"""Data for representing a finite element
:param family: Element type.
:param degree: Polynomial degree of the element.
:param shape: Shape for vector/tensor valued elements that are
constructed from blocked scalar elements (e.g., Lagrange).
:param symmetry: Symmetry option for blocked tensor elements.
"""
family: str
degree: int
shape: tuple[int, ...] | None = None
symmetry: bool | None = None
def functionspace(
mesh: Mesh,
element: (
ufl.finiteelement.AbstractFiniteElement
| ElementMetaData
| tuple[str, int]
| tuple[str, int, tuple]
| tuple[str, int, tuple, bool]
),
) -> FunctionSpace:
"""Create a finite element function space.
Args:
mesh: Mesh that space is defined on.
element: Finite element description.
Returns:
A function space.
"""
# Create UFL element
dtype = mesh.geometry.x.dtype
try:
e = ElementMetaData(*element) # type: ignore
ufl_e = basix.ufl.element(
e.family,
mesh.basix_cell(), # type: ignore
e.degree,
shape=e.shape,
symmetry=e.symmetry,
dtype=dtype,
)
except TypeError:
ufl_e = element # type: ignore
# Check that element and mesh cell types match
if ((domain := mesh.ufl_domain()) is None) or ufl_e.cell != domain.ufl_cell():
raise ValueError("Non-matching UFL cell and mesh cell shapes.")
# Create DOLFINx objects
element = finiteelement(mesh.topology.cell_type, ufl_e, dtype) # type: ignore
cpp_dofmap = _cpp.fem.create_dofmap(mesh.comm, mesh.topology._cpp_object, element._cpp_object) # type: ignore
assert np.issubdtype(mesh.geometry.x.dtype, element.dtype), ( # type: ignore
"Mesh and element dtype are not compatible."
)
# Initialize the cpp.FunctionSpace
try:
cppV = _cpp.fem.FunctionSpace_float64(mesh._cpp_object, element._cpp_object, cpp_dofmap) # type: ignore
except TypeError:
cppV = _cpp.fem.FunctionSpace_float32(mesh._cpp_object, element._cpp_object, cpp_dofmap) # type: ignore
return FunctionSpace(mesh, ufl_e, cppV)
class FunctionSpace(ufl.FunctionSpace):
"""A space on which Functions (fields) can be defined."""
_cpp_object: _cpp.fem.FunctionSpace_float32 | _cpp.fem.FunctionSpace_float64
_mesh: Mesh
def __init__(
self,
mesh: Mesh,
element: ufl.finiteelement.AbstractFiniteElement,
cppV: (_cpp.fem.FunctionSpace_float32 | _cpp.fem.FunctionSpace_float64),
):
"""Create a finite element function space.
Note:
This initialiser is for internal use and not normally called
in user code. Use :func:`functionspace` to create a function
space.
Args:
mesh: Mesh that space is defined on.
element: UFL finite element.
cppV: Compiled C++ function space.
"""
if mesh._cpp_object is not cppV.mesh:
raise RuntimeError("Meshes do not match in function space initialisation.")
ufl_domain = mesh.ufl_domain()
self._cpp_object = cppV
self._mesh = mesh
super().__init__(ufl_domain, element)
def clone(self) -> FunctionSpace:
"""Create a new FunctionSpace :math:`W` which shares data with this
FunctionSpace :math:`V`, but with a different unique integer ID.
This function is helpful for defining mixed problems and using
blocked linear algebra. For example, a matrix block defined on
the spaces :math:`V \\times W` where, :math:`V` and :math:`W`
are defined on the same finite element and mesh can be
identified as an off-diagonal block whereas the :math:`V \\times
V` and :math:`V \\times V` matrices can be identified as
diagonal blocks. This is relevant for the handling of boundary
conditions.
Returns:
A new function space that shares data
"""
try:
Vcpp = _cpp.fem.FunctionSpace_float64(
self._cpp_object.mesh, self._cpp_object.element, self._cpp_object.dofmap
) # type: ignore
except TypeError:
Vcpp = _cpp.fem.FunctionSpace_float32(
self._cpp_object.mesh, self._cpp_object.element, self._cpp_object.dofmap
) # type: ignore
return FunctionSpace(self._mesh, self.ufl_element(), Vcpp)
@property
def num_sub_spaces(self) -> int:
"""Number of sub spaces."""
return self.element.num_sub_elements
def sub(self, i: int) -> FunctionSpace:
"""Return the i-th sub space.
Args:
i: Index of the subspace to extract.
Returns:
A subspace.
Note:
If the subspace is re-used, for performance reasons the
returned subspace should be stored by the caller to avoid
repeated re-computation of the subspace.
"""
assert self.ufl_element().num_sub_elements > i
sub_element = self.ufl_element().sub_elements[i]
cppV_sub = self._cpp_object.sub([i]) # type: ignore
return FunctionSpace(self._mesh, sub_element, cppV_sub)
def component(self):
"""Return the component relative to the parent space."""
return self._cpp_object.component() # type: ignore
def contains(self, V) -> bool:
"""Check if a space is contained in, or is the same as
(identity), this space.
Args:
V: The space to check to for inclusion.
Returns:
`` True`` if ``V`` is contained in, or is the same as, this
space.
"""
return self._cpp_object.contains(V._cpp_object) # type: ignore
def __eq__(self, other):
"""Comparison for equality."""
return super().__eq__(other) and self._cpp_object == other._cpp_object
def __ne__(self, other):
"""Comparison for inequality."""
return super().__ne__(other) or self._cpp_object != other._cpp_object
def ufl_function_space(self) -> ufl.FunctionSpace:
"""UFL function space."""
return self
@cached_property
def element(self) -> FiniteElement:
"""Function space finite element."""
return FiniteElement(self._cpp_object.element)
@property
def dofmap(self) -> DofMap:
"""Degree-of-freedom map associated with the function space."""
return DofMap(self._cpp_object.dofmap)
def dofmaps(self, idx: int) -> DofMap:
return DofMap(self._cpp_object.dofmaps(idx))
@property
def mesh(self) -> Mesh:
"""Mesh on which the function space is defined."""
return self._mesh
def collapse(self) -> tuple[FunctionSpace, np.ndarray]:
"""Collapse a subspace and return a new function space and a map
from new to old dofs.
Returns:
A new function space and the map from new to old
degrees-of-freedom.
"""
cpp_space, dofs = self._cpp_object.collapse() # type: ignore
V = FunctionSpace(self._mesh, self.ufl_element(), cpp_space)
return V, dofs
def tabulate_dof_coordinates(self) -> npt.NDArray[np.float64]:
"""Tabulate the coordinates of the degrees-of-freedom in the
function space.
Returns:
Coordinates of the degrees-of-freedom.
Note:
This method is only for elements with point evaluation
degrees-of-freedom.
"""
return self._cpp_object.tabulate_dof_coordinates() # type: ignore
|