1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
|
# Copyright (C) 2018-2025 Garth N. Wells, Nathan Sime and Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""High-level solver classes and functions for assembling PETSc objects.
Functions in this module generally apply functions in :mod:`dolfinx.fem`
to PETSc linear algebra objects and handle any PETSc-specific
preparation.
Note:
The following does not apply to the high-level classes
:class:`dolfinx.fem.petsc.LinearProblem`
:class:`dolfinx.fem.petsc.NonlinearProblem`.
Due to subtle issues in the interaction between petsc4py memory
management and the Python garbage collector, it is recommended that
the PETSc method ``destroy()`` is called on returned PETSc objects
once the object is no longer required. Note that ``destroy()`` is
collective over the object's MPI communicator.
"""
from __future__ import annotations
import contextlib
import ctypes as _ctypes
import functools
import os
import pathlib
from collections.abc import Sequence
from petsc4py import PETSc
# ruff: noqa: E402
import dolfinx
assert dolfinx.has_petsc4py
import warnings
from functools import partial
import numpy as np
from numpy import typing as npt
import dolfinx.cpp as _cpp
import dolfinx.la.petsc
import ufl
from dolfinx.cpp.fem.petsc import discrete_curl as _discrete_curl
from dolfinx.cpp.fem.petsc import discrete_gradient as _discrete_gradient
from dolfinx.cpp.fem.petsc import interpolation_matrix as _interpolation_matrix
from dolfinx.fem import IntegralType, pack_coefficients, pack_constants
from dolfinx.fem.assemble import _assemble_vector_array
from dolfinx.fem.assemble import apply_lifting as _apply_lifting
from dolfinx.fem.bcs import DirichletBC
from dolfinx.fem.bcs import bcs_by_block as _bcs_by_block
from dolfinx.fem.forms import Form, derivative_block
from dolfinx.fem.forms import extract_function_spaces as _extract_function_spaces
from dolfinx.fem.forms import form as _create_form
from dolfinx.fem.function import Function as _Function
from dolfinx.fem.function import FunctionSpace as _FunctionSpace
from dolfinx.mesh import EntityMap as _EntityMap
__all__ = [
"LinearProblem",
"NewtonSolverNonlinearProblem",
"NonlinearProblem",
"apply_lifting",
"assemble_jacobian",
"assemble_matrix",
"assemble_residual",
"assemble_vector",
"assign",
"cffi_utils",
"create_matrix",
"create_vector",
"ctypes_utils",
"discrete_curl",
"discrete_gradient",
"interpolation_matrix",
"numba_utils",
"set_bc",
]
# -- Vector instantiation -------------------------------------------------
def create_vector(
V: _FunctionSpace | Sequence[_FunctionSpace | None],
/,
kind: str | None = None,
) -> PETSc.Vec: # type: ignore[name-defined]
"""Create a PETSc vector that is compatible with a linear form(s)
or functionspace(s).
Three cases are supported:
1. For a single space ``V``, if ``kind`` is ``None`` or is
``PETSc.Vec.Type.MPI``, a ghosted PETSc vector which is compatible
with ``V`` is created.
2. If ``V`` is a sequence of functionspaces and ``kind`` is ``None`` or
is ``PETSc.Vec.Type.MPI``, a ghosted PETSc vector which is
compatible with ``V`` is created. The created vector ``b``
is initialized such that on each MPI process ``b = [b_0, b_1, ...,
b_n, b_0g, b_1g, ..., b_ng]``, where ``b_i`` are the entries
associated with the 'owned' degrees-of-freedom for ``V[i]`` and
``b_ig`` are the 'unowned' (ghost) entries for ``V[i]``.
For this case, the returned vector has an attribute ``_blocks``
that holds the local offsets into ``b`` for the (i) owned and
(ii) ghost entries for each ``V_i``. It can be accessed by
``b.getAttr("_blocks")``. The offsets can be used to get views
into ``b`` for blocks, e.g.::
>>> offsets0, offsets1, = b.getAttr("_blocks")
>>> offsets0
(0, 12, 28)
>>> offsets1
(28, 32, 35)
>>> b0_owned = b.array[offsets0[0]:offsets0[1]]
>>> b0_ghost = b.array[offsets1[0]:offsets1[1]]
>>> b1_owned = b.array[offsets0[1]:offsets0[2]]
>>> b1_ghost = b.array[offsets1[1]:offsets1[2]]
3. If ``L/V`` is a sequence of linear forms/functionspaces and ``kind``
is ``PETSc.Vec.Type.NEST``, a PETSc nested vector (a 'nest' of
ghosted PETSc vectors) which is compatible with ``L/V`` is created.
Args:
V: Function space or a sequence of such.
kind: PETSc vector type (``VecType``) to create.
Returns:
A PETSc vector with a layout that is compatible with ``V``. The
vector is not initialised to zero.
"""
if isinstance(
V, _FunctionSpace | _cpp.fem.FunctionSpace_float32 | _cpp.fem.FunctionSpace_float64
):
V = [V]
elif any(_V is None for _V in V):
raise RuntimeError("Can not create vector for None block.")
maps = [(_V.dofmap.index_map, _V.dofmap.index_map_bs) for _V in V] # type: ignore
return dolfinx.la.petsc.create_vector(maps, kind=kind)
# -- Matrix instantiation -------------------------------------------------
def create_matrix(
a: Form | Sequence[Sequence[Form]],
kind: str | Sequence[Sequence[str]] | None = None,
) -> PETSc.Mat: # type: ignore[name-defined]
"""Create a PETSc matrix that is compatible with the (sequence) of
bilinear form(s).
Three cases are supported:
1. For a single bilinear form, it creates a compatible PETSc matrix
of type ``kind``.
2. For a rectangular array of bilinear forms, if ``kind`` is
``PETSc.Mat.Type.NEST`` or ``kind`` is an array of PETSc ``Mat``
types (with the same shape as ``a``), a matrix of type
``PETSc.Mat.Type.NEST`` is created. The matrix is compatible
with the forms ``a``.
3. For a rectangular array of bilinear forms, it create a single
(non-nested) matrix of type ``kind`` that is compatible with the
array of for forms ``a``. If ``kind`` is ``None``, then the
matrix is the default type.
In this case, the matrix is arranged::
A = [a_00 ... a_0n]
[a_10 ... a_1n]
[ ... ]
[a_m0 .. a_mn]
Args:
a: A bilinear form or a nested sequence of bilinear forms.
kind: The PETSc matrix type (``MatType``).
Returns:
A PETSc matrix.
"""
if isinstance(a, Sequence):
_a = [[None if form is None else form._cpp_object for form in arow] for arow in a]
if kind == PETSc.Mat.Type.NEST: # type: ignore[attr-defined]
# Create nest matrix with default types
return _cpp.fem.petsc.create_matrix_nest(_a, None)
else:
if kind is None or isinstance(kind, str): # Single 'kind' type
return _cpp.fem.petsc.create_matrix_block(_a, kind)
else: # Array of 'kind' types
return _cpp.fem.petsc.create_matrix_nest(_a, kind)
else: # Single form
return _cpp.fem.petsc.create_matrix(a._cpp_object, kind)
# -- Vector assembly ------------------------------------------------------
@functools.singledispatch
def assemble_vector(
L: Form | Sequence[Form],
constants: npt.NDArray | Sequence[npt.NDArray] | None = None,
coeffs: (
dict[tuple[IntegralType, int], npt.NDArray]
| Sequence[dict[tuple[IntegralType, int], npt.NDArray]]
| None
) = None,
kind: str | None = None,
) -> PETSc.Vec: # type: ignore[name-defined]
"""Assemble linear form(s) into a new PETSc vector.
Three cases are supported:
1. If ``L`` is a single linear form, the form is assembled into a
ghosted PETSc vector.
2. If ``L`` is a sequence of linear forms and ``kind`` is ``None``
or is ``PETSc.Vec.Type.MPI``, the forms are assembled into a
vector ``b`` such that ``b = [b_0, b_1, ..., b_n, b_0g, b_1g,
..., b_ng]`` where ``b_i`` are the entries associated with the
'owned' degrees-of-freedom for ``L[i]`` and ``b_ig`` are the
'unowned' (ghost) entries for ``L[i]``.
For this case, the returned vector has an attribute ``_blocks``
that holds the local offsets into ``b`` for the (i) owned and
(ii) ghost entries for each ``L[i]``. See :func:`create_vector`
for a description of the offset blocks.
3. If ``L`` is a sequence of linear forms and ``kind`` is
``PETSc.Vec.Type.NEST``, the forms are assembled into a PETSc
nested vector ``b`` (a nest of ghosted PETSc vectors) such that
``L[i]`` is assembled into into the ith nested matrix in ``b``.
Constant and coefficient data that appear in the forms(s) can be
packed outside of this function to avoid re-packing by this
function. The functions :func:`dolfinx.fem.pack_constants` and
:func:`dolfinx.fem.pack_coefficients` can be used to 'pre-pack' the
data.
Note:
The returned vector is not finalised, i.e. ghost values are not
accumulated on the owning processes.
Args:
L: A linear form or sequence of linear forms.
constants: Constants appearing in the form. For a single form,
``constants.ndim==1``. For multiple forms, the constants for
form ``L[i]`` are ``constants[i]``.
coeffs: Coefficients appearing in the form. For a single form,
``coeffs.shape=(num_cells, n)``. For multiple forms, the
coefficients for form ``L[i]`` are ``coeffs[i]``.
kind: PETSc vector type.
Returns:
An assembled vector.
"""
b = create_vector(_extract_function_spaces(L), kind=kind) # type: ignore
dolfinx.la.petsc._zero_vector(b)
return assemble_vector(b, L, constants, coeffs) # type: ignore[arg-type]
@assemble_vector.register
def _(
b: PETSc.Vec, # type: ignore[name-defined]
L: Form | Sequence[Form],
constants: npt.NDArray | Sequence[npt.NDArray] | None = None,
coeffs: (
dict[tuple[IntegralType, int], npt.NDArray]
| Sequence[dict[tuple[IntegralType, int], npt.NDArray]]
| None
) = None,
) -> PETSc.Vec: # type: ignore[name-defined]
"""Assemble linear form(s) into a PETSc vector.
The vector ``b`` must have been initialized with a size/layout that
is consistent with the linear form. The vector ``b`` is normally
created by :func:`create_vector`.
Constants and coefficients that appear in the forms(s) can be passed
to avoid re-computation of constants and coefficients. The functions
:func:`dolfinx.fem.assemble.pack_constants` and
:func:`dolfinx.fem.assemble.pack_coefficients` can be called.
Note:
The vector is not zeroed before assembly and it is not
finalised, i.e. ghost values are not accumulated on the owning
processes.
Args:
b: Vector to assemble the contribution of the linear form into.
L: A linear form or sequence of linear forms to assemble into
``b``.
constants: Constants appearing in the form. For a single form,
``constants.ndim==1``. For multiple forms, the constants for
form ``L[i]`` are ``constants[i]``.
coeffs: Coefficients appearing in the form. For a single form,
``coeffs.shape=(num_cells, n)``. For multiple forms, the
coefficients for form ``L[i]`` are ``coeffs[i]``.
Returns:
Assembled vector.
"""
if b.getType() == PETSc.Vec.Type.NEST: # type: ignore[attr-defined]
if not isinstance(L, Sequence):
raise ValueError("Must provide a sequence of forms when assembling a nest vector")
constants = [None] * len(L) if constants is None else constants # type: ignore[list-item]
coeffs = [None] * len(L) if coeffs is None else coeffs # type: ignore[list-item]
for b_sub, L_sub, const, coeff in zip(b.getNestSubVecs(), L, constants, coeffs):
with b_sub.localForm() as b_local:
_assemble_vector_array(b_local.array_w, L_sub, const, coeff) # type: ignore[arg-type]
elif isinstance(L, Sequence):
constants = pack_constants(L) if constants is None else constants
coeffs = pack_coefficients(L) if coeffs is None else coeffs
offset0, offset1 = b.getAttr("_blocks")
with b.localForm() as b_l:
for L_, const, coeff, off0, off1, offg0, offg1 in zip(
L, constants, coeffs, offset0, offset0[1:], offset1, offset1[1:]
):
bx_ = np.zeros((off1 - off0) + (offg1 - offg0), dtype=PETSc.ScalarType) # type: ignore[attr-defined]
_assemble_vector_array(bx_, L_, const, coeff) # type: ignore[arg-type]
size = off1 - off0
b_l.array_w[off0:off1] += bx_[:size]
b_l.array_w[offg0:offg1] += bx_[size:]
else:
with b.localForm() as b_local:
_assemble_vector_array(b_local.array_w, L, constants, coeffs) # type: ignore[arg-type]
return b
# -- Matrix assembly ------------------------------------------------------
@functools.singledispatch
def assemble_matrix(
a: Form | Sequence[Sequence[Form]],
bcs: Sequence[DirichletBC] | None = None,
diag: float = 1,
constants: Sequence[npt.NDArray] | Sequence[Sequence[npt.NDArray]] | None = None,
coeffs: (
dict[tuple[IntegralType, int], npt.NDArray]
| Sequence[dict[tuple[IntegralType, int], npt.NDArray]]
| None
) = None,
kind=None,
):
"""Assemble a bilinear form into a matrix.
The following cases are supported:
1. If ``a`` is a single bilinear form, the form is assembled
into PETSc matrix of type ``kind``.
#. If ``a`` is a :math:`m \\times n` rectangular array of forms the
forms in ``a`` are assembled into a matrix such that::
A = [A_00 ... A_0n]
[A_10 ... A_1n]
[ ... ]
[A_m0 .. A_mn]
where ``A_ij`` is the matrix associated with the form
``a[i][j]``.
a. If ``kind`` is a ``PETSc.Mat.Type`` (other than
``PETSc.Mat.Type.NEST``) or is ``None``, the matrix type is
``kind`` of the default type (if ``kind`` is ``None``).
#. If ``kind`` is ``PETSc.Mat.Type.NEST`` or a rectangular array
of PETSc matrix types, the returned matrix has type
``PETSc.Mat.Type.NEST``.
Rows/columns that are constrained by a Dirichlet boundary condition
are zeroed, with the diagonal to set to ``diag``.
Constant and coefficient data that appear in the forms(s) can be
packed outside of this function to avoid re-packing by this
function. The functions :func:`dolfinx.fem.pack_constants` and
:func:`dolfinx.fem.pack_coefficients` can be used to 'pre-pack' the
data.
Note:
The returned matrix is not 'assembled', i.e. ghost contributions
are not accumulated.
Args:
a: Bilinear form(s) to assembled into a matrix.
bc: Dirichlet boundary conditions applied to the system.
diag: Value to set on the matrix diagonal for Dirichlet
boundary condition constrained degrees-of-freedom belonging
to the same trial and test space.
constants: Constants appearing the in the form.
coeffs: Coefficients appearing the in the form.
Returns:
Matrix representing the bilinear form.
"""
A = create_matrix(a, kind)
assemble_matrix(A, a, bcs, diag, constants, coeffs) # type: ignore[arg-type]
return A
@assemble_matrix.register
def _(
A: PETSc.Mat, # type: ignore[name-defined]
a: Form | Sequence[Sequence[Form]],
bcs: Sequence[DirichletBC] | None = None,
diag: float = 1,
constants: npt.NDArray | Sequence[Sequence[npt.NDArray]] | None = None,
coeffs: (
dict[tuple[IntegralType, int], npt.NDArray]
| Sequence[Sequence[dict[tuple[IntegralType, int], npt.NDArray]]]
| None
) = None,
) -> PETSc.Mat: # type: ignore[name-defined]
"""Assemble bilinear form into a matrix.
The matrix vector ``A`` must have been initialized with a
size/layout that is consistent with the bilinear form(s). The PETSc
matrix ``A`` is normally created by :func:`create_matrix`.
The returned matrix is not finalised, i.e. ghost values are not
accumulated.
"""
if A.getType() == PETSc.Mat.Type.NEST: # type: ignore[attr-defined]
if not isinstance(a, Sequence):
raise ValueError("Must provide a sequence of forms when assembling a nest matrix")
constants = [pack_constants(forms) for forms in a] if constants is None else constants # type: ignore[misc]
coeffs = [pack_coefficients(forms) for forms in a] if coeffs is None else coeffs # type: ignore[misc]
for i, (a_row, const_row, coeff_row) in enumerate(zip(a, constants, coeffs)):
for j, (a_block, const, coeff) in enumerate(zip(a_row, const_row, coeff_row)):
if a_block is not None:
Asub = A.getNestSubMatrix(i, j)
assemble_matrix(Asub, a_block, bcs, diag, const, coeff) # type: ignore[arg-type]
elif i == j:
for bc in bcs:
row_forms = [row_form for row_form in a_row if row_form is not None]
assert len(row_forms) > 0
if row_forms[0].function_spaces[0].contains(bc.function_space):
raise RuntimeError(
f"Diagonal sub-block ({i}, {j}) cannot be 'None'"
" and have DirichletBC applied."
" Consider assembling a zero block."
)
elif isinstance(a, Sequence): # Blocked
consts = [pack_constants(forms) for forms in a] if constants is None else constants # type: ignore[misc]
coeffs = [pack_coefficients(forms) for forms in a] if coeffs is None else coeffs # type: ignore[misc]
V = (_extract_function_spaces(a, 0), _extract_function_spaces(a, 1))
for index in range(2):
# the check below is to ensure that a .dofmaps attribute is
# available when creating is0 and is1 below
Vi = V[index]
assert isinstance(Vi, list)
if all(Vsub is None for Vsub in Vi):
raise ValueError(
"Cannot have a entire {'row' if index == 0 else 'column'} of a full of None"
)
is0 = _cpp.la.petsc.create_index_sets(
[(Vsub.dofmaps(0).index_map, Vsub.dofmaps(0).index_map_bs) for Vsub in V[0]] # type: ignore[union-attr]
)
is1 = _cpp.la.petsc.create_index_sets(
[(Vsub.dofmaps(0).index_map, Vsub.dofmaps(0).index_map_bs) for Vsub in V[1]] # type: ignore[union-attr]
)
_bcs = [bc._cpp_object for bc in bcs] if bcs is not None else []
for i, a_row in enumerate(a):
for j, a_sub in enumerate(a_row):
if a_sub is not None:
Asub = A.getLocalSubMatrix(is0[i], is1[j])
_cpp.fem.petsc.assemble_matrix(
Asub,
a_sub._cpp_object,
consts[i][j],
coeffs[i][j], # type: ignore[index]
_bcs,
True,
)
A.restoreLocalSubMatrix(is0[i], is1[j], Asub)
elif i == j:
for bc in _bcs:
row_forms = [row_form for row_form in a_row if row_form is not None]
assert len(row_forms) > 0
if row_forms[0].function_spaces[0].contains(bc.function_space):
raise RuntimeError(
f"Diagonal sub-block ({i}, {j}) cannot be 'None' "
" and have DirichletBC applied."
" Consider assembling a zero block."
)
# Flush to enable switch from add to set in the matrix
A.assemble(PETSc.Mat.AssemblyType.FLUSH) # type: ignore[attr-defined]
# Set diagonal
for i, a_row in enumerate(a):
for j, a_sub in enumerate(a_row):
if a_sub is not None:
Asub = A.getLocalSubMatrix(is0[i], is1[j])
if a_sub.function_spaces[0] is a_sub.function_spaces[1]:
_cpp.fem.petsc.insert_diagonal(Asub, a_sub.function_spaces[0], _bcs, diag)
A.restoreLocalSubMatrix(is0[i], is1[j], Asub)
else: # Non-blocked
constants = pack_constants(a) if constants is None else constants # type: ignore[assignment]
coeffs = pack_coefficients(a) if coeffs is None else coeffs # type: ignore[assignment]
_bcs = [bc._cpp_object for bc in bcs] if bcs is not None else []
_cpp.fem.petsc.assemble_matrix(A, a._cpp_object, constants, coeffs, _bcs)
if a.function_spaces[0] is a.function_spaces[1]:
A.assemblyBegin(PETSc.Mat.AssemblyType.FLUSH) # type: ignore[attr-defined]
A.assemblyEnd(PETSc.Mat.AssemblyType.FLUSH) # type: ignore[attr-defined]
_cpp.fem.petsc.insert_diagonal(A, a.function_spaces[0], _bcs, diag)
return A
# -- Modifiers for Dirichlet conditions -----------------------------------
def apply_lifting(
b: PETSc.Vec, # type: ignore[name-defined]
a: Sequence[Form] | Sequence[Sequence[Form]],
bcs: Sequence[DirichletBC] | Sequence[Sequence[DirichletBC]] | None,
x0: Sequence[PETSc.Vec] | None = None, # type: ignore[name-defined]
alpha: float = 1,
constants: Sequence[npt.NDArray] | Sequence[Sequence[npt.NDArray]] | None = None,
coeffs: (
dict[tuple[IntegralType, int], npt.NDArray]
| Sequence[Sequence[dict[tuple[IntegralType, int], npt.NDArray]]]
| None
) = None,
) -> None:
r"""Modify the right-hand side PETSc vector ``b`` to account for
constraints (Dirichlet boundary conitions).
See :func:`dolfinx.fem.apply_lifting` for a mathematical
descriptions of the lifting operation.
Args:
b: Vector to modify in-place.
a: List of bilinear forms. If ``b`` is not blocked or a nest,
then ``a`` is a 1D sequence. If ``b`` is blocked or a nest,
then ``a`` is a 2D array of forms, with the ``a[i]`` forms
used to modify the block/nest vector ``b[i]``.
bcs: Boundary conditions to apply, which form a 2D array.
If ``b`` is nested or blocked then ``bcs[i]`` are the
boundary conditions to apply to block/nest ``i``.
The function :func:`dolfinx.fem.bcs_by_block` can be
used to prepare the 2D array of ``DirichletBC`` objects
from the 2D sequence ``a``::
bcs1 = fem.bcs_by_block(
fem.extract_function_spaces(a, 1),
bcs
)
If ``b`` is not blocked or nest, then ``len(bcs)`` must be
equal to 1. The function :func:`dolfinx.fem.bcs_by_block`
can be used to prepare the 2D array of ``DirichletBC``
from the 1D sequence ``a``::
bcs1 = fem.bcs_by_block(
fem.extract_function_spaces([a], 1),
bcs
)
x0: Vector to use in modify ``b`` (see
:func:`dolfinx.fem.apply_lifting`). Treated as zero if
``None``.
alpha: Scalar parameter in lifting (see
:func:`dolfinx.fem.apply_lifting`).
constants: Packed constant data appearing in the forms ``a``. If
``None``, the constant data will be packed by the function.
coeffs: Packed coefficient data appearing in the forms ``a``. If
``None``, the coefficient data will be packed by the
function.
Note:
Ghost contributions are not accumulated (not sent to owner).
Caller is responsible for reverse-scatter to update the ghosts.
Note:
Boundary condition values are *not* set in ``b`` by this
function. Use :func:`dolfinx.fem.DirichletBC.set` to set values
in ``b``.
"""
if b.getType() == PETSc.Vec.Type.NEST: # type: ignore[attr-defined]
x0 = [] if x0 is None else x0.getNestSubVecs() # type: ignore[attr-defined]
constants = [pack_constants(forms) for forms in a] if constants is None else constants # type: ignore[assignment]
coeffs = [pack_coefficients(forms) for forms in a] if coeffs is None else coeffs # type: ignore[misc]
for b_sub, a_sub, const, coeff in zip(b.getNestSubVecs(), a, constants, coeffs): # type: ignore[arg-type]
const_ = list(
map(lambda x: np.array([], dtype=PETSc.ScalarType) if x is None else x, const) # type: ignore[attr-defined, call-overload]
)
apply_lifting(b_sub, a_sub, bcs, x0, alpha, const_, coeff) # type: ignore[arg-type]
else:
with contextlib.ExitStack() as stack:
if b.getAttr("_blocks") is not None:
if x0 is not None:
offset0, offset1 = x0.getAttr("_blocks") # type: ignore[attr-defined]
xl = stack.enter_context(x0.localForm()) # type: ignore[attr-defined]
xlocal = [
np.concatenate((xl[off0:off1], xl[offg0:offg1]))
for (off0, off1, offg0, offg1) in zip(
offset0, offset0[1:], offset1, offset1[1:]
)
]
else:
xlocal = None
offset0, offset1 = b.getAttr("_blocks")
with b.localForm() as b_l:
for i, (a_, off0, off1, offg0, offg1) in enumerate(
zip(a, offset0, offset0[1:], offset1, offset1[1:])
):
const = pack_constants(a_) if constants is None else constants[i] # type: ignore[arg-type]
coeff = pack_coefficients(a_) if coeffs is None else coeffs[i] # type: ignore[arg-type, assignment, index]
const_ = [
np.empty(0, dtype=PETSc.ScalarType) if val is None else val # type: ignore[attr-defined]
for val in const
]
bx_ = np.concatenate((b_l[off0:off1], b_l[offg0:offg1]))
_apply_lifting(bx_, a_, bcs, xlocal, float(alpha), const_, coeff) # type: ignore[arg-type]
size = off1 - off0
b_l.array_w[off0:off1] = bx_[:size]
b_l.array_w[offg0:offg1] = bx_[size:]
else:
x0 = [] if x0 is None else x0
x0 = [stack.enter_context(x.localForm()) for x in x0]
x0_r = [x.array_r for x in x0]
b_local = stack.enter_context(b.localForm())
_apply_lifting(b_local.array_w, a, bcs, x0_r, alpha, constants, coeffs) # type: ignore[arg-type]
return b
def set_bc(
b: PETSc.Vec, # type: ignore[name-defined]
bcs: Sequence[DirichletBC] | Sequence[Sequence[DirichletBC]],
x0: PETSc.Vec | None = None, # type: ignore[name-defined]
alpha: float = 1,
) -> None:
r"""Set constraint (Dirchlet boundary condition) values in an vector.
For degrees-of-freedoms that are constrained by a Dirichlet boundary
condition, this function sets that degrees-of-freedom to ``alpha *
(g - x0)``, where ``g`` is the boundary condition value.
Only owned entries in ``b`` (owned by the MPI process) are modified
by this function.
Args:
b: Vector to modify by setting boundary condition values.
bcs: Boundary conditions to apply. If ``b`` is nested or
blocked, ``bcs`` is a 2D array and ``bcs[i]`` are the
boundary conditions to apply to block/nest ``i``. Otherwise
``bcs`` should be a sequence of ``DirichletBC``\s. For
block/nest problems, :func:`dolfinx.fem.bcs_by_block` can be
used to prepare the 2D array of ``DirichletBC`` objects.
x0: Vector used in the value that constrained entries are set
to. If ``None``, ``x0`` is treated as zero.
alpha: Scalar value used in the value that constrained entries
are set to.
"""
if len(bcs) == 0:
return
if not isinstance(bcs[0], Sequence):
x0 = x0.array_r if x0 is not None else None
for bc in bcs:
bc.set(b.array_w, x0, alpha) # type: ignore[union-attr]
elif b.getType() == PETSc.Vec.Type.NEST: # type: ignore[attr-defined]
_b = b.getNestSubVecs()
x0 = len(_b) * [None] if x0 is None else x0.getNestSubVecs()
for b_sub, bc, x_sub in zip(_b, bcs, x0): # type: ignore[assignment, arg-type]
set_bc(b_sub, bc, x_sub, alpha) # type: ignore[arg-type]
else: # block vector
offset0, _ = b.getAttr("_blocks")
b_array = b.getArray(readonly=False)
x_array = x0.getArray(readonly=True) if x0 is not None else None
for bcs, off0, off1 in zip(bcs, offset0, offset0[1:]): # type: ignore[assignment]
x0_sub = x_array[off0:off1] if x0 is not None else None # type: ignore[index]
for bc in bcs:
bc.set(b_array[off0:off1], x0_sub, alpha) # type: ignore[arg-type, union-attr]
# -- High-level interface for KSP ---------------------------------------
class LinearProblem:
"""High-level class for solving a linear variational problem using
a PETSc KSP.
Solves problems of the form
:math:`a_{ij}(u, v) = f_i(v), i,j=0,\\ldots,N\\
\\forall v \\in V` where
:math:`u=(u_0,\\ldots,u_N), v=(v_0,\\ldots,v_N)`
using PETSc KSP as the linear solver.
Note:
This high-level class automatically handles PETSc memory
management. The user does not need to manually call
``.destroy()`` on returned PETSc objects.
"""
def __init__(
self,
a: ufl.Form | Sequence[Sequence[ufl.Form]],
L: ufl.Form | Sequence[ufl.Form],
*,
petsc_options_prefix: str,
bcs: Sequence[DirichletBC] | None = None,
u: _Function | Sequence[_Function] | None = None,
P: ufl.Form | Sequence[Sequence[ufl.Form]] | None = None,
kind: str | Sequence[Sequence[str]] | None = None,
petsc_options: dict | None = None,
form_compiler_options: dict | None = None,
jit_options: dict | None = None,
entity_maps: Sequence[_EntityMap] | None = None,
) -> None:
"""Initialize solver for a linear variational problem.
By default, the underlying KSP solver uses PETSc's default
options, usually GMRES + ILU preconditioning. To use the robust
combination of LU via MUMPS
Example::
problem = LinearProblem(a, L, bcs=[bc0, bc1],
petsc_options_prefix="basic_linear_problem",
petsc_options= {
"ksp_type": "preonly",
"pc_type": "lu",
"pc_factor_mat_solver_type": "mumps"
})
This class also supports nested block-structured problems.
Example::
problem = LinearProblem([[a00, a01], [None, a11]], [L0, L1],
bcs=[bc0, bc1], u=[uh0, uh1],
kind="nest",
petsc_options_prefix="nest_linear_problem")
Every PETSc object created will have a unique options prefix set.
We recommend discovering these prefixes dynamically via the
petsc4py API rather than hard-coding each prefix value
into the programme.
Example::
ksp_options_prefix = problem.solver.getOptionsPrefix()
A_options_prefix = problem.A.getOptionsPrefix()
Args:
a: Bilinear UFL form or a nested sequence of bilinear
forms, the left-hand side of the variational problem.
L: Linear UFL form or a sequence of linear forms, the
right-hand side of the variational problem.
bcs: Sequence of Dirichlet boundary conditions to apply to
the variational problem and the preconditioner matrix.
u: Solution function. It is created if not provided.
P: Bilinear UFL form or a sequence of sequence of bilinear
forms, used as a preconditioner.
kind: The PETSc matrix and vector kind. Common choices
are ``mpi`` and ``nest``. See
:func:`dolfinx.fem.petsc.create_matrix` and
:func:`dolfinx.fem.petsc.create_vector` for more
information.
petsc_options_prefix: Mandatory named argument. Options prefix
used as root prefix on all internally created PETSc
objects. Typically ends with ``_``. Must be the same on
all ranks, and is usually unique within the programme.
petsc_options: Options set on the underlying PETSc KSP only.
The options must be the same on all ranks. For available
choices for the ``petsc_options`` kwarg, see the `PETSc KSP
documentation
<https://petsc4py.readthedocs.io/en/stable/manual/ksp/>`_.
Options on other objects (matrices, vectors) should be set
explicitly by the user.
form_compiler_options: Options used in FFCx compilation of
all forms. Run ``ffcx --help`` at the commandline to see
all available options.
jit_options: Options used in CFFI JIT compilation of C
code generated by FFCx. See ``python/dolfinx/jit.py`` for
all available options. Takes priority over all other
option values.
entity_maps: If any trial functions, test functions, or
coefficients in the form are not defined over the same mesh
as the integration domain, a corresponding :class:
`EntityMap<dolfinx.mesh.EntityMap>` must be provided.
"""
self._a = _create_form(
a,
dtype=PETSc.ScalarType, # type: ignore[attr-defined]
form_compiler_options=form_compiler_options,
jit_options=jit_options,
entity_maps=entity_maps,
)
self._L = _create_form(
L,
dtype=PETSc.ScalarType, # type: ignore[attr-defined]
form_compiler_options=form_compiler_options,
jit_options=jit_options,
entity_maps=entity_maps,
)
self._A = create_matrix(self._a, kind=kind)
self._preconditioner = _create_form(
P, # type: ignore[arg-type]
dtype=PETSc.ScalarType, # type: ignore[attr-defined]
form_compiler_options=form_compiler_options,
jit_options=jit_options,
entity_maps=entity_maps,
)
self._P_mat = (
create_matrix(self._preconditioner, kind=kind)
if self._preconditioner is not None
else None
)
# For nest matrices kind can be a nested list.
kind = "nest" if self.A.getType() == PETSc.Mat.Type.NEST else kind # type: ignore[attr-defined]
assert kind is None or isinstance(kind, str)
self._b = create_vector(_extract_function_spaces(self.L), kind=kind) # type: ignore
self._x = create_vector(_extract_function_spaces(self.L), kind=kind) # type: ignore
self._u: _Function | Sequence[_Function]
if u is None:
# Extract function space for unknown from the right hand
# side of the equation.
if isinstance(L, Sequence):
self._u = [_Function(Li.arguments()[0].ufl_function_space()) for Li in L]
else:
self._u = _Function(L.arguments()[0].ufl_function_space())
else:
self._u = u
self.bcs = [] if bcs is None else bcs
self._solver = PETSc.KSP().create(self.A.comm) # type: ignore[attr-defined]
self.solver.setOperators(self.A, self.P_mat)
if petsc_options_prefix == "":
raise ValueError("PETSc options prefix cannot be empty.")
self._petsc_options_prefix = petsc_options_prefix
self.solver.setOptionsPrefix(petsc_options_prefix)
self.A.setOptionsPrefix(f"{petsc_options_prefix}A_")
self.b.setOptionsPrefix(f"{petsc_options_prefix}b_")
self.x.setOptionsPrefix(f"{petsc_options_prefix}x_")
if self.P_mat is not None:
self.P_mat.setOptionsPrefix(f"{petsc_options_prefix}P_mat_")
# Set options on KSP only
if petsc_options is not None:
opts = PETSc.Options() # type: ignore[attr-defined]
opts.prefixPush(self.solver.getOptionsPrefix())
for k, v in petsc_options.items():
opts[k] = v
self.solver.setFromOptions()
# Tidy up global options
for k in petsc_options.keys():
del opts[k]
opts.prefixPop()
if kind == "nest":
# Transfer nest IS on self.A to PC of main KSP. This allows
# fieldsplit preconditioning to be applied, if desired.
nest_IS = self.A.getNestISs()
fieldsplit_IS = tuple(
[
(f"{u.name + '_' if u.name != 'f' else ''}{i}", IS)
for i, (u, IS) in enumerate(zip(self.u, nest_IS[0]))
]
)
self.solver.getPC().setFieldSplitIS(*fieldsplit_IS)
def __del__(self):
for obj in filter(
lambda obj: obj is not None, (self._solver, self._A, self._b, self._x, self._P_mat)
):
obj.destroy()
def solve(self) -> _Function | Sequence[_Function]:
"""Solve the problem.
This method updates the solution ``u`` function(s) stored in the
problem instance.
Note:
The user is responsible for asserting convergence of the KSP
solver e.g. ``problem.solver.getConvergedReason() > 0``.
Alternatively, pass ``"ksp_error_if_not_converged" : True`` in
``petsc_options`` to raise a ``PETScError`` on failure.
Returns:
The solution function(s).
"""
# Assemble lhs
self.A.zeroEntries()
assemble_matrix(self.A, self.a, bcs=self.bcs) # type: ignore[arg-type, misc]
self.A.assemble()
# Assemble preconditioner
if self.P_mat is not None:
self.P_mat.zeroEntries()
assemble_matrix(self.P_mat, self.preconditioner, bcs=self.bcs) # type: ignore[arg-type, misc]
self.P_mat.assemble()
# Assemble rhs
dolfinx.la.petsc._zero_vector(self.b)
assemble_vector(self.b, self.L) # type: ignore[arg-type]
# Apply boundary conditions to the rhs
if self.bcs is not None:
if isinstance(self.u, Sequence): # block or nest
bcs1 = _bcs_by_block(_extract_function_spaces(self.a, 1), self.bcs) # type: ignore[arg-type]
apply_lifting(self.b, self.a, bcs=bcs1) # type: ignore[arg-type]
dolfinx.la.petsc._ghost_update(
self.b,
PETSc.InsertMode.ADD, # type: ignore[attr-defined]
PETSc.ScatterMode.REVERSE, # type: ignore[attr-defined]
)
bcs0 = _bcs_by_block(_extract_function_spaces(self.L), self.bcs) # type: ignore[arg-type]
dolfinx.fem.petsc.set_bc(self.b, bcs0)
else: # single form
apply_lifting(self.b, [self.a], bcs=[self.bcs]) # type: ignore[arg-type]
dolfinx.la.petsc._ghost_update(
self.b,
PETSc.InsertMode.ADD, # type: ignore[attr-defined]
PETSc.ScatterMode.REVERSE, # type: ignore[attr-defined]
)
for bc in self.bcs:
bc.set(self.b.array_w)
else:
dolfinx.la.petsc._ghost_update(self.b, PETSc.InsertMode.ADD, PETSc.ScatterMode.REVERSE) # type: ignore[attr-defined]
# Solve linear system and update ghost values in the solution
self.solver.solve(self.b, self.x)
dolfinx.la.petsc._ghost_update(self.x, PETSc.InsertMode.INSERT, PETSc.ScatterMode.FORWARD) # type: ignore[attr-defined]
dolfinx.fem.petsc.assign(self.x, self.u)
return self.u
@property
def L(self) -> Form | Sequence[Form]:
"""The compiled linear form representing the left-hand side."""
return self._L
@property
def a(self) -> Form | Sequence[Form]:
"""The compiled bilinear form representing the right-hand side."""
return self._a
@property
def preconditioner(self) -> Form | Sequence[Form]:
"""The compiled bilinear form representing the preconditioner."""
return self._preconditioner
@property
def A(self) -> PETSc.Mat: # type: ignore[name-defined]
"""Left-hand side matrix."""
return self._A
@property
def P_mat(self) -> PETSc.Mat: # type: ignore[name-defined]
"""Preconditioner matrix."""
return self._P_mat
@property
def b(self) -> PETSc.Vec: # type: ignore[name-defined]
"""Right-hand side vector."""
return self._b
@property
def x(self) -> PETSc.Vec: # type: ignore[name-defined]
"""Solution vector.
Note:
The vector does not share memory with the solution
function(s) ``u``.
"""
return self._x
@property
def solver(self) -> PETSc.KSP: # type: ignore[name-defined]
"""The PETSc KSP solver."""
return self._solver
@property
def u(self) -> _Function | Sequence[_Function]:
"""Solution function(s).
Note:
The function(s) do not share memory with the solution
vector ``x``.
"""
return self._u
# -- High-level interface for SNES ---------------------------------------
def _assign_block_data(forms: Sequence[Form], vec: PETSc.Vec): # type: ignore[name-defined]
"""Assign block data to a PETSc vector.
Args:
forms: List of forms to extract block data from.
vec: PETSc vector to assign block data to.
"""
maps = (
(
form.function_spaces[0].dofmaps(0).index_map, # type: ignore[attr-defined]
form.function_spaces[0].dofmaps(0).index_map_bs, # type: ignore[attr-defined]
)
for form in forms
)
return dolfinx.la.petsc._assign_block_data(maps, vec)
def assemble_residual(
u: _Function | Sequence[_Function],
residual: Form | Sequence[Form],
jacobian: Form | Sequence[Sequence[Form]],
bcs: Sequence[DirichletBC],
_snes: PETSc.SNES, # type: ignore[name-defined]
x: PETSc.Vec, # type: ignore[name-defined]
b: PETSc.Vec, # type: ignore[name-defined]
):
"""Assemble the residual at ``x`` into the vector ``b``.
A function conforming to the interface expected by ``SNES.setFunction``
can be created by fixing the first four arguments, e.g.:
Example::
snes = PETSc.SNES().create(mesh.comm)
assemble_residual = functools.partial(
dolfinx.fem.petsc.assemble_residual,
u, residual, jacobian, bcs)
snes.setFunction(assemble_residual, x, b)
Args:
u: Function(s) tied to the solution vector within the residual and
Jacobian.
residual: Form of the residual. It can be a sequence of forms.
jacobian: Form of the Jacobian. It can be a nested sequence of
forms.
bcs: List of Dirichlet boundary conditions to lift the residual.
_snes: The solver instance.
x: The vector containing the point to evaluate the residual at.
b: Vector to assemble the residual into.
"""
# Update input vector before assigning
dolfinx.la.petsc._ghost_update(x, PETSc.InsertMode.INSERT, PETSc.ScatterMode.FORWARD) # type: ignore[attr-defined]
# Assign the input vector to the unknowns
assign(x, u)
# Assign block data if block assembly is requested
if isinstance(residual, Sequence) and b.getType() != PETSc.Vec.Type.NEST: # type: ignore[attr-defined]
_assign_block_data(residual, b)
_assign_block_data(residual, x)
# Assemble the residual
dolfinx.la.petsc._zero_vector(b)
assemble_vector(b, residual) # type: ignore[arg-type]
# Lift vector
if isinstance(jacobian, Sequence):
# Nest and blocked lifting
bcs1 = _bcs_by_block(_extract_function_spaces(jacobian, 1), bcs) # type: ignore[arg-type]
apply_lifting(b, jacobian, bcs=bcs1, x0=x, alpha=-1.0)
dolfinx.la.petsc._ghost_update(b, PETSc.InsertMode.ADD, PETSc.ScatterMode.REVERSE) # type: ignore[attr-defined]
bcs0 = _bcs_by_block(_extract_function_spaces(residual), bcs) # type: ignore[arg-type]
set_bc(b, bcs0, x0=x, alpha=-1.0)
else:
# Single form lifting
apply_lifting(b, [jacobian], bcs=[bcs], x0=[x], alpha=-1.0)
dolfinx.la.petsc._ghost_update(b, PETSc.InsertMode.ADD, PETSc.ScatterMode.REVERSE) # type: ignore[attr-defined]
set_bc(b, bcs, x0=x, alpha=-1.0)
dolfinx.la.petsc._ghost_update(b, PETSc.InsertMode.INSERT, PETSc.ScatterMode.FORWARD) # type: ignore[attr-defined]
def assemble_jacobian(
u: Sequence[_Function] | _Function,
jacobian: Form | Sequence[Sequence[Form]],
preconditioner: Form | Sequence[Sequence[Form]] | None,
bcs: Sequence[DirichletBC],
_snes: PETSc.SNES, # type: ignore[name-defined]
x: PETSc.Vec, # type: ignore[name-defined]
J: PETSc.Mat, # type: ignore[name-defined]
P_mat: PETSc.Mat, # type: ignore[name-defined]
):
"""Assemble the Jacobian and preconditioner matrices at ``x``
into ``J`` and ``P_mat``.
A function conforming to the interface expected by ``SNES.setJacobian``
can be created by fixing the first four arguments e.g.:
Example::
snes = PETSc.SNES().create(mesh.comm)
assemble_jacobian = functools.partial(
dolfinx.fem.petsc.assemble_jacobian,
u, jacobian, preconditioner, bcs)
snes.setJacobian(assemble_jacobian, A, P_mat)
Args:
u: Function tied to the solution vector within the residual and
jacobian.
jacobian: Compiled form of the Jacobian.
preconditioner: Compiled form of the preconditioner.
bcs: List of Dirichlet boundary conditions to apply to the Jacobian
and preconditioner matrices.
_snes: The solver instance.
x: The vector containing the point to evaluate at.
J: Matrix to assemble the Jacobian into.
P_mat: Matrix to assemble the preconditioner into.
"""
# Copy existing soultion into the function used in the residual and
# Jacobian
dolfinx.la.petsc._ghost_update(x, PETSc.InsertMode.INSERT, PETSc.ScatterMode.FORWARD) # type: ignore[attr-defined]
assign(x, u)
# Assemble Jacobian
J.zeroEntries()
assemble_matrix(J, jacobian, bcs, diag=1.0) # type: ignore[arg-type, misc]
J.assemble()
if preconditioner is not None:
P_mat.zeroEntries()
assemble_matrix(P_mat, preconditioner, bcs, diag=1.0) # type: ignore[arg-type, misc]
P_mat.assemble()
class NonlinearProblem:
"""High-level class for solving nonlinear variational problems
with PETSc SNES.
Solves problems of the form
:math:`F_i(u, v) = 0, i=0,\\ldots,N\\ \\forall v \\in V` where
:math:`u=(u_0,\\ldots,u_N), v=(v_0,\\ldots,v_N)` using PETSc
SNES as the non-linear solver.
Note:
The deprecated version of this class for use with
:class:`dolfinx.nls.petsc.NewtonSolver` has been renamed
:class:`dolfinx.fem.petsc.NewtonSolverNonlinearProblem`.
Note:
This high-level class automatically handles PETSc memory
management. The user does not need to manually call
``.destroy()`` on returned PETSc objects.
"""
def __init__(
self,
F: ufl.form.Form | Sequence[ufl.form.Form],
u: _Function | Sequence[_Function],
*,
petsc_options_prefix: str,
bcs: Sequence[DirichletBC] | None = None,
J: ufl.form.Form | Sequence[Sequence[ufl.form.Form]] | None = None,
P: ufl.form.Form | Sequence[Sequence[ufl.form.Form]] | None = None,
kind: str | Sequence[Sequence[str]] | None = None,
petsc_options: dict | None = None,
form_compiler_options: dict | None = None,
jit_options: dict | None = None,
entity_maps: Sequence[_EntityMap] | None = None,
):
"""
Initialize solver for a nonlinear variational problem.
By default, the underlying SNES solver uses PETSc's default
options. To use the robust combination of LU via MUMPS with
a backtracking linesearch, pass:
Example::
petsc_options = {"ksp_type": "preonly",
"pc_type": "lu",
"pc_factor_mat_solver_type": "mumps",
"snes_linesearch_type": "bt",
}
Every PETSc object will have a unique options prefix set. We
recommend discovering these prefixes dynamically via the
petsc4py API rather than hard-coding each prefix value into
the programme.
Example::
snes_options_prefix = problem.solver.getOptionsPrefix()
jacobian_options_prefix = problem.A.getOptionsPrefix()
Args:
F: UFL form(s) representing the residual :math:`F_i`.
u: Function(s) used to define the residual and Jacobian.
bcs: Dirichlet boundary conditions.
J: UFL form(s) representing the Jacobian
:math:`J_{ij} = dF_i/du_j`. If not passed, derived
automatically.
P: UFL form(s) representing the preconditioner.
kind: The PETSc matrix and vector kind. Common choices
are ``mpi`` and ``nest``. See
:func:`dolfinx.fem.petsc.create_matrix` and
:func:`dolfinx.fem.petsc.create_vector` for more
information.
petsc_options_prefix: Mandatory named argument.
Options prefix used as root prefix on all
internally created PETSc objects. Typically ends with `_`.
Must be the same on all ranks, and is usually unique within
the programme.
petsc_options: Options set on the underlying PETSc SNES only.
The options must be the same on all ranks. For available
choices for ``petsc_options``, see the
`PETSc SNES documentation
<https://petsc4py.readthedocs.io/en/stable/manual/snes/>`_.
Options on other objects (matrices, vectors) should be set
explicitly by the user.
form_compiler_options: Options used in FFCx compilation of all
forms. Run ``ffcx --help`` at the command line to see all
available options.
jit_options: Options used in CFFI JIT compilation of C code
generated by FFCx. See ``python/dolfinx/jit.py`` for all
available options. Takes priority over all other option
values.
entity_maps: If any trial functions, test functions, or
coefficients in the form are not defined over the same mesh
as the integration domain, a corresponding :class:
`EntityMap<dolfinx.mesh.EntityMap>` must be provided.
"""
# Compile residual and Jacobian forms
self._F = _create_form(
F,
form_compiler_options=form_compiler_options,
jit_options=jit_options,
entity_maps=entity_maps,
)
if J is None:
J = derivative_block(F, u)
self._J = _create_form(
J,
form_compiler_options=form_compiler_options,
jit_options=jit_options,
entity_maps=entity_maps,
)
if P is not None:
self._preconditioner = _create_form(
P,
form_compiler_options=form_compiler_options,
jit_options=jit_options,
entity_maps=entity_maps,
)
else:
self._preconditioner = None
self._u = u
# Set default values if not supplied
bcs = [] if bcs is None else bcs
# Create PETSc structures for the residual, Jacobian and solution
# vector
self._A = create_matrix(self.J, kind=kind)
# Create PETSc structure for preconditioner if provided
if self._preconditioner is not None:
self._P_mat = create_matrix(self._preconditioner, kind=kind)
else:
self._P_mat = None
# Determine the vector kind based on the matrix type
kind = "nest" if self._A.getType() == PETSc.Mat.Type.NEST else kind # type: ignore[attr-defined]
assert kind is None or isinstance(kind, str)
self._b = create_vector(_extract_function_spaces(self.F), kind=kind) # type: ignore
self._x = create_vector(_extract_function_spaces(self.F), kind=kind) # type: ignore
# Create the SNES solver and attach the corresponding Jacobian and
# residual computation functions
self._snes = PETSc.SNES().create(self.A.comm) # type: ignore[attr-defined]
self.solver.setJacobian(
partial(assemble_jacobian, u, self.J, self.preconditioner, bcs), self.A, self.P_mat
)
self.solver.setFunction(partial(assemble_residual, u, self.F, self.J, bcs), self.b)
if petsc_options_prefix == "":
raise ValueError("PETSc options prefix cannot be empty.")
self.solver.setOptionsPrefix(petsc_options_prefix)
self.A.setOptionsPrefix(f"{petsc_options_prefix}A_")
if self.P_mat is not None:
self.P_mat.setOptionsPrefix(f"{petsc_options_prefix}P_mat_")
self.b.setOptionsPrefix(f"{petsc_options_prefix}b_")
self.x.setOptionsPrefix(f"{petsc_options_prefix}x_")
# Set options for SNES only
if petsc_options is not None:
opts = PETSc.Options() # type: ignore[attr-defined]
opts.prefixPush(self.solver.getOptionsPrefix())
for k, v in petsc_options.items():
opts[k] = v
self.solver.setFromOptions()
# Tidy up global options
for k in petsc_options.keys():
del opts[k]
opts.prefixPop()
if self.P_mat is not None and kind == "nest":
# Transfer nest IS on self.P_mat to PC of main KSP. This allows
# fieldsplit preconditioning to be applied, if desired.
nest_IS = self.P_mat.getNestISs()
fieldsplit_IS = tuple(
[
(f"{u.name + '_' if u.name != 'f' else ''}{i}", IS)
for i, (u, IS) in enumerate(zip(self.u, nest_IS[0]))
]
)
self.solver.getKSP().getPC().setFieldSplitIS(*fieldsplit_IS)
def solve(self) -> _Function | Sequence[_Function]:
"""Solve the problem.
This method updates the solution ``u`` function(s) stored in the
problem instance.
Note:
The user is responsible for asserting convergence of the SNES
solver e.g. ``assert problem.solver.getConvergedReason() > 0``.
Alternatively, pass ``"snes_error_if_not_converged": True`` and
``"ksp_error_if_not_converged" : True`` in ``petsc_options`` to
raise a ``PETScError`` on failure.
Returns:
The solution function(s).
"""
# Copy current iterate into the work array.
assign(self.u, self.x)
# Solve problem
self.solver.solve(None, self.x)
dolfinx.la.petsc._ghost_update(self.x, PETSc.InsertMode.INSERT, PETSc.ScatterMode.FORWARD) # type: ignore[attr-defined]
# Copy solution back to function
assign(self.x, self.u)
return self.u
def __del__(self):
for obj in filter(
lambda obj: obj is not None, (self._snes, self._A, self._b, self._x, self._P_mat)
):
obj.destroy()
@property
def F(self) -> Form | Sequence[Form]:
"""The compiled residual."""
return self._F
@property
def J(self) -> Form | Sequence[Sequence[Form]]:
"""The compiled Jacobian."""
return self._J
@property
def preconditioner(self) -> Form | Sequence[Sequence[Form]] | None:
"""The compiled preconditioner."""
return self._preconditioner
@property
def A(self) -> PETSc.Mat: # type: ignore[name-defined]
"""Jacobian matrix."""
return self._A
@property
def P_mat(self) -> PETSc.Mat | None: # type: ignore[name-defined]
"""Preconditioner matrix."""
return self._P_mat
@property
def b(self) -> PETSc.Vec: # type: ignore[name-defined]
"""Residual vector."""
return self._b
@property
def x(self) -> PETSc.Vec: # type: ignore[name-defined]
"""Solution vector.
Note:
The vector does not share memory with the
solution function(s) ``u``.
"""
return self._x
@property
def solver(self) -> PETSc.SNES: # type: ignore[name-defined]
"""The SNES solver."""
return self._snes
@property
def u(self) -> _Function | Sequence[_Function]:
"""Solution function(s).
Note:
The function(s) do not share memory with the solution
vector ``x``.
"""
return self._u
# -- Deprecated non-linear problem class for NewtonSolver -----------------
class NewtonSolverNonlinearProblem:
"""(Deprecated) Nonlinear problem class for solving nonlinear
problems using :class:`dolfinx.nls.petsc.NewtonSolver`.
Solves problems of the form :math:`F(u, v) = 0 \\ \\forall v \\in V`
using PETSc as the linear algebra backend.
Note:
This class is deprecated in favour of
:class:`dolfinx.fem.petsc.NonlinearProblem`, a high level
interface to SNES.
Note:
This class was previously called
``dolfinx.fem.petsc.NonlinearProblem``.
"""
def __init__(
self,
F: ufl.form.Form,
u: _Function,
bcs: Sequence[DirichletBC] | None = None,
J: ufl.form.Form = None,
form_compiler_options: dict | None = None,
jit_options: dict | None = None,
):
"""Initialize solver for solving a non-linear problem using
Newton's method`.
Args:
F: The PDE residual F(u, v).
u: The unknown.
bcs: List of Dirichlet boundary conditions.
J: UFL representation of the Jacobian (optional)
form_compiler_options: Options used in FFCx
compilation of this form. Run ``ffcx --help`` at the
command line to see all available options.
jit_options: Options used in CFFI JIT compilation of C
code generated by FFCx. See ``python/dolfinx/jit.py``
for all available options. Takes priority over all other
option values.
Example::
problem = NonlinearProblem(F, u, [bc0, bc1])
"""
warnings.warn(
(
"dolfinx.nls.petsc.NewtonSolver is deprecated. "
+ "Use dolfinx.fem.petsc.NonlinearProblem, "
+ "a high level interface to PETSc SNES, instead."
),
DeprecationWarning,
)
self._L = _create_form(
F, form_compiler_options=form_compiler_options, jit_options=jit_options
)
# Create the Jacobian matrix, dF/du
if J is None:
V = u.function_space
du = ufl.TrialFunction(V)
J = ufl.derivative(F, u, du)
self._a = _create_form(
J, form_compiler_options=form_compiler_options, jit_options=jit_options
)
self.bcs = bcs
@property
def L(self) -> Form:
"""The compiled linear form (the residual form)."""
return self._L
@property
def a(self) -> Form:
"""The compiled bilinear form (the Jacobian form)."""
return self._a
def form(self, x: PETSc.Vec) -> None: # type: ignore[name-defined]
"""This function is called before the residual or Jacobian is
computed. This is usually used to update ghost values.
Args:
x: The vector containing the latest solution
"""
x.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) # type: ignore[attr-defined]
def F(self, x: PETSc.Vec, b: PETSc.Vec) -> None: # type: ignore[name-defined]
"""Assemble the residual F into the vector b.
Args:
x: The vector containing the latest solution
b: Vector to assemble the residual into
"""
# Reset the residual vector
dolfinx.la.petsc._zero_vector(b)
assemble_vector(b, self._L)
# Apply boundary condition
if self.bcs is not None:
apply_lifting(b, [self._a], bcs=[self.bcs], x0=[x], alpha=-1.0)
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) # type: ignore[attr-defined]
set_bc(b, self.bcs, x, -1.0)
else:
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) # type: ignore[attr-defined]
def J(self, x: PETSc.Vec, A: PETSc.Mat) -> None: # type: ignore[name-defined]
"""Assemble the Jacobian matrix.
Args:
x: The vector containing the latest solution
"""
A.zeroEntries()
assemble_matrix(A, self._a, self.bcs) # type: ignore[arg-type]
A.assemble()
# -- Additional free helper functions (interpolations, assignments etc.) --
def discrete_curl(space0: _FunctionSpace, space1: _FunctionSpace) -> PETSc.Mat: # type: ignore[name-defined]
"""Assemble a discrete curl operator.
Args:
space0: H1 space to interpolate the gradient from.
space1: H(curl) space to interpolate into.
Returns:
Discrete curl operator.
"""
return _discrete_curl(space0._cpp_object, space1._cpp_object)
def discrete_gradient(space0: _FunctionSpace, space1: _FunctionSpace) -> PETSc.Mat: # type: ignore[name-defined]
"""Assemble a discrete gradient operator.
The discrete gradient operator interpolates the gradient of a H1
finite element function into a H(curl) space. It is assumed that the
H1 space uses an identity map and the H(curl) space uses a covariant
Piola map.
Args:
space0: H1 space to interpolate the gradient from.
space1: H(curl) space to interpolate into.
Returns:
Discrete gradient operator.
"""
return _discrete_gradient(space0._cpp_object, space1._cpp_object)
def interpolation_matrix(V0: _FunctionSpace, V1: _FunctionSpace) -> PETSc.Mat: # type: ignore[name-defined]
r"""Assemble an interpolation operator matrix for discreye
interpolation between finite element spaces.
Consider is the vector of degrees-of-freedom :math:`u_{i}`
associated with a function in :math:`V_{i}`. This function returns
the matrix :math:`\Pi` sucht that
.. math::
u_{1} = \Pi u_{0}.
Args:
V0: Space to interpolate from.
V1: Space to interpolate into.
Returns:
The interpolation matrix :math:`\Pi`.
Note:
The returned matrix is not finalised, i.e. ghost values are not
accumulated.
"""
return _interpolation_matrix(V0._cpp_object, V1._cpp_object)
@functools.singledispatch
def assign(u: _Function | Sequence[_Function], x: PETSc.Vec): # type: ignore[name-defined]
"""Assign :class:`Function` degrees-of-freedom to a vector.
Assigns degree-of-freedom values in ``u``, which is possibly a
sequence of ``Function``s, to ``x``. When ``u`` is a sequence of
``Function``s, degrees-of-freedom for the ``Function``s in ``u`` are
'stacked' and assigned to ``x``. See :func:`assign` for
documentation on how stacked assignment is handled.
Args:
u: ``Function`` (s) to assign degree-of-freedom value from.
x: Vector to assign degree-of-freedom values in ``u`` to.
"""
if x.getType() == PETSc.Vec.Type().NEST: # type: ignore[attr-defined]
dolfinx.la.petsc.assign([v.x.array for v in u], x)
else:
if isinstance(u, Sequence):
data0, data1 = [], []
for v in u:
bs = v.function_space.dofmap.bs
n = v.function_space.dofmap.index_map.size_local
data0.append(v.x.array[: bs * n])
data1.append(v.x.array[bs * n :])
dolfinx.la.petsc.assign(data0 + data1, x)
else:
dolfinx.la.petsc.assign(u.x.array, x)
@assign.register
def _(x: PETSc.Vec, u: _Function | Sequence[_Function]): # type: ignore[name-defined]
"""Assign vector entries to :class:`Function` degrees-of-freedom.
Assigns values in ``x`` to the degrees-of-freedom of ``u``, which is
possibly a Sequence of ``Function``s. When ``u`` is a Sequence of
``Function``s, values in ``x`` are assigned block-wise to the
``Function``s. See :func:`assign` for documentation on how blocked
assignment is handled.
Args:
x: Vector with values to assign values from.
u: ``Function`` (s) to assign degree-of-freedom values to.
"""
if x.getType() == PETSc.Vec.Type().NEST: # type: ignore[attr-defined]
dolfinx.la.petsc.assign(x, [v.x.array for v in u])
else:
if isinstance(u, Sequence):
data0, data1 = [], []
for v in u:
bs = v.function_space.dofmap.bs
n = v.function_space.dofmap.index_map.size_local
data0.append(v.x.array[: bs * n])
data1.append(v.x.array[bs * n :])
dolfinx.la.petsc.assign(x, data0 + data1)
else:
dolfinx.la.petsc.assign(x, u.x.array)
def get_petsc_lib() -> pathlib.Path:
"""Find the full path of the PETSc shared library.
Returns:
Full path to the PETSc shared library.
Raises:
RuntimeError: If PETSc library cannot be found for if more than
one library is found.
"""
import petsc4py as _petsc4py
petsc_dir = _petsc4py.get_config()["PETSC_DIR"]
petsc_arch = _petsc4py.lib.getPathArchPETSc()[1]
try:
if np.issubdtype(_petsc4py.PETSc.ScalarType, np.complexfloating):
scalar_type = "complex"
else:
scalar_type = "real"
except AttributeError:
# if petsc4py.PETSc is not available, read type from petsc_dir
scalar_type = "complex" if "complex" in petsc_dir else "real"
candidate_paths = [
os.path.join(petsc_dir, petsc_arch, "lib", f"libpetsc_{scalar_type}.so"),
os.path.join(petsc_dir, petsc_arch, "lib", "libpetsc.so"),
os.path.join(petsc_dir, petsc_arch, "lib", "libpetsc.dylib"),
]
exists_paths = []
for candidate_path in candidate_paths:
if os.path.exists(candidate_path):
exists_paths.append(candidate_path)
if len(exists_paths) == 0:
raise RuntimeError(
f"Could not find a PETSc shared library. Candidate paths: {candidate_paths}"
)
elif len(exists_paths) > 1:
raise RuntimeError(f"More than one PETSc shared library found. Paths: {exists_paths}")
return pathlib.Path(exists_paths[0])
class numba_utils:
"""Utility attributes for working with Numba and PETSc.
These attributes are convenience functions for calling PETSc C
functions from within Numba functions.
Note:
`Numba <https://numba.pydata.org/>`_ must be available
to use these utilities.
Examples:
A typical use of these utility functions is::
import numpy as np
import numpy.typing as npt
def set_vals(A: int,
m: int, rows: npt.NDArray[PETSc.IntType],
n: int, cols: npt.NDArray[PETSc.IntType],
data: npt.NDArray[PETSc.ScalarTYpe], mode: int):
MatSetValuesLocal(A, m, rows.ctypes, n, cols.ctypes,
data.ctypes, mode)
"""
try:
import petsc4py.PETSc as _PETSc
import llvmlite as _llvmlite
import numba as _numba
_llvmlite.binding.load_library_permanently(str(get_petsc_lib()))
_int = _numba.from_dtype(_PETSc.IntType) # type: ignore
_scalar = _numba.from_dtype(_PETSc.ScalarType) # type: ignore
_real = _numba.from_dtype(_PETSc.RealType) # type: ignore
_int_ptr = _numba.core.types.CPointer(_int)
_scalar_ptr = _numba.core.types.CPointer(_scalar)
_MatSetValues_sig = _numba.core.typing.signature(
_numba.core.types.intc,
_numba.core.types.uintp,
_int,
_int_ptr,
_int,
_int_ptr,
_scalar_ptr,
_numba.core.types.intc,
)
MatSetValuesLocal = _numba.core.types.ExternalFunction(
"MatSetValuesLocal", _MatSetValues_sig
)
"""See PETSc `MatSetValuesLocal
<https://petsc.org/release/manualpages/Mat/MatSetValuesLocal>`_
documentation."""
MatSetValuesBlockedLocal = _numba.core.types.ExternalFunction(
"MatSetValuesBlockedLocal", _MatSetValues_sig
)
"""See PETSc `MatSetValuesBlockedLocal
<https://petsc.org/release/manualpages/Mat/MatSetValuesBlockedLocal>`_
documentation."""
except ImportError:
pass
class ctypes_utils:
"""Utility attributes for working with ctypes and PETSc.
These attributes are convenience functions for calling PETSc C
functions, typically from within Numba functions.
Examples:
A typical use of these utility functions is::
import numpy as np
import numpy.typing as npt
def set_vals(A: int,
m: int, rows: npt.NDArray[PETSc.IntType],
n: int, cols: npt.NDArray[PETSc.IntType],
data: npt.NDArray[PETSc.ScalarTYpe], mode: int):
MatSetValuesLocal(A, m, rows.ctypes, n, cols.ctypes,
data.ctypes, mode)
"""
try:
import petsc4py.PETSc as _PETSc
_lib_ctypes = _ctypes.cdll.LoadLibrary(str(get_petsc_lib()))
# Note: ctypes does not have complex types, hence we use void* for
# scalar data
_int = np.ctypeslib.as_ctypes_type(_PETSc.IntType) # type: ignore
MatSetValuesLocal = _lib_ctypes.MatSetValuesLocal
"""See PETSc `MatSetValuesLocal
<https://petsc.org/release/manualpages/Mat/MatSetValuesLocal>`_
documentation."""
MatSetValuesLocal.argtypes = [
_ctypes.c_void_p,
_int,
_ctypes.POINTER(_int),
_int,
_ctypes.POINTER(_int),
_ctypes.c_void_p,
_ctypes.c_int,
]
MatSetValuesBlockedLocal = _lib_ctypes.MatSetValuesBlockedLocal
"""See PETSc `MatSetValuesBlockedLocal
<https://petsc.org/release/manualpages/Mat/MatSetValuesBlockedLocal>`_
documentation."""
MatSetValuesBlockedLocal.argtypes = [
_ctypes.c_void_p,
_int,
_ctypes.POINTER(_int),
_int,
_ctypes.POINTER(_int),
_ctypes.c_void_p,
_ctypes.c_int,
]
except ImportError:
pass
class cffi_utils:
"""Utility attributes for working with CFFI (ABI mode) and Numba.
Registers Numba's complex types with CFFI.
If PETSc is available, CFFI convenience functions for calling PETSc C
functions are also created. These are typically called from within
Numba functions.
Note:
`CFFI <https://cffi.readthedocs.io/>`_ and `Numba
<https://numba.pydata.org/>`_ must be available to use these
utilities.
Examples:
A typical use of these utility functions is::
import numpy as np
import numpy.typing as npt
def set_vals(A: int,
m: int, rows: npt.NDArray[PETSc.IntType],
n: int, cols: npt.NDArray[PETSc.IntType],
data: npt.NDArray[PETSc.ScalarType], mode: int):
MatSetValuesLocal(A, m, ffi.from_buffer(rows), n,
ffi.from_buffer(cols),
ffi.from_buffer(rows(data), mode)
"""
import cffi as _cffi
_ffi = _cffi.FFI()
try:
import numba as _numba
import numba.core.typing.cffi_utils as _cffi_support
# Register complex types
_cffi_support.register_type(_ffi.typeof("float _Complex"), _numba.types.complex64)
_cffi_support.register_type(_ffi.typeof("double _Complex"), _numba.types.complex128)
except KeyError:
pass
except ImportError:
from dolfinx.log import LogLevel, log
log(
LogLevel.DEBUG,
"Could not import numba, so cffi/numba complex types were not registered.",
)
try:
from petsc4py import PETSc as _PETSc
_lib_cffi = _ffi.dlopen(str(get_petsc_lib()))
_CTYPES = {
np.int32: "int32_t",
np.int64: "int64_t",
np.float32: "float",
np.float64: "double",
np.complex64: "float _Complex",
np.complex128: "double _Complex",
np.longlong: "long long",
}
_c_int_t = _CTYPES[_PETSc.IntType] # type: ignore
_c_scalar_t = _CTYPES[_PETSc.ScalarType] # type: ignore
_ffi.cdef(
f"""
int MatSetValuesLocal(void* mat, {_c_int_t} nrow, const {_c_int_t}* irow,
{_c_int_t} ncol, const {_c_int_t}* icol,
const {_c_scalar_t}* y, int addv);
int MatSetValuesBlockedLocal(void* mat, {_c_int_t} nrow, const {_c_int_t}* irow,
{_c_int_t} ncol, const {_c_int_t}* icol,
const {_c_scalar_t}* y, int addv);
"""
)
MatSetValuesLocal = _lib_cffi.MatSetValuesLocal # type: ignore[attr-defined]
"""See PETSc `MatSetValuesLocal
<https://petsc.org/release/manualpages/Mat/MatSetValuesLocal>`_
documentation."""
MatSetValuesBlockedLocal = _lib_cffi.MatSetValuesBlockedLocal # type: ignore[attr-defined]
"""See PETSc `MatSetValuesBlockedLocal
<https://petsc.org/release/manualpages/Mat/MatSetValuesBlockedLocal>`_
documentation."""
except KeyError:
pass
except ImportError:
from dolfinx.log import LogLevel, log
log(
LogLevel.DEBUG,
"Could not import petsc4py, so cffi/PETSc ABI mode interface was not created.",
)
|