1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
# Copyright (C) 2022-2025 Jørgen S. Dokken, Henrik N. T. Finsberg and
# Paul T. Kühner
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Tools to extract data from Gmsh models."""
import typing
from collections.abc import Callable
from pathlib import Path
from mpi4py import MPI as _MPI
import numpy as np
import numpy.typing as npt
import basix
import basix.ufl
import ufl
from dolfinx import cpp as _cpp
from dolfinx import default_real_type
from dolfinx.cpp.graph import AdjacencyList_int32 as _AdjacencyList_int32
from dolfinx.graph import AdjacencyList, adjacencylist
from dolfinx.io.utils import distribute_entity_data
from dolfinx.mesh import CellType, Mesh, MeshTags, create_mesh, meshtags_from_entities
__all__ = [
"MeshData",
"PhysicalGroup",
"TopologyDict",
"cell_perm_array",
"extract_geometry",
"extract_topology_and_markers",
"model_to_mesh",
"read_from_msh",
"ufl_mesh",
]
class TopologyDict(typing.TypedDict):
"""TopologyDict is a TypedDict for storing the topology of the marked
cell.
Args:
topology: 2D array containing the topology of the marked cell.
cell_data: List with the corresponding markers.
Note:
The TypedDict is only used for type hinting, and does not
enforce the structure of the dictionary, but rather provides
a hint to the user and the type checker.
"""
topology: npt.NDArray[
np.integer
] # cell->node connectivity, shape (num_cells, num_nodes_per_cell)
cell_data: npt.NDArray[np.integer] # cell tags, shape (num_cells,)
entity_tags: npt.NDArray[np.integer] # GMSH cell indices, shape (num_cells,)
# Map from Gmsh cell type identifier (integer) to DOLFINx cell type and
# degree https://gmsh.info//doc/texinfo/gmsh.html#MSH-file-format
_gmsh_to_cells = {
1: ("interval", 1),
2: ("triangle", 1),
3: ("quadrilateral", 1),
4: ("tetrahedron", 1),
5: ("hexahedron", 1),
8: ("interval", 2),
9: ("triangle", 2),
10: ("quadrilateral", 2),
11: ("tetrahedron", 2),
12: ("hexahedron", 2),
15: ("point", 0),
21: ("triangle", 3),
26: ("interval", 3),
29: ("tetrahedron", 3),
36: ("quadrilateral", 3),
92: ("hexahedron", 3),
}
class PhysicalGroup(typing.NamedTuple):
"""Physical group info.
Args:
dim: dimension of the physical group
tag: tag of the physical group
"""
dim: int
tag: int
class MeshData(typing.NamedTuple):
"""Data for representing a mesh and associated tags.
Args:
mesh: Mesh.
cell_tags: MeshTags for cells.
facet_tags: MeshTags for facets (codim 1).
ridge_tags: MeshTags for ridges (codim 2).
peak_tags: MeshTags for peaks (codim 3).
physical_groups: Physical groups in the mesh, where the key
is the physical name and the value is a tuple with the
dimension and tag.
"""
mesh: Mesh
cell_tags: MeshTags | None
facet_tags: MeshTags | None
ridge_tags: MeshTags | None
peak_tags: MeshTags | None
physical_groups: dict[str, PhysicalGroup]
def ufl_mesh(gmsh_cell: int, gdim: int, dtype: npt.DTypeLike) -> ufl.Mesh:
"""Create a UFL mesh from a Gmsh cell identifier and geometric
dimension.
See https://gmsh.info//doc/texinfo/gmsh.html#MSH-file-format.
Args:
gmsh_cell: Gmsh cell identifier.
gdim: Geometric dimension of the mesh.
Returns:
UFL Mesh using Lagrange elements (equispaced) of the
corresponding DOLFINx cell.
"""
try:
shape, degree = _gmsh_to_cells[gmsh_cell]
except KeyError as e:
print(f"Unknown cell type {gmsh_cell}.")
raise e
cell = ufl.Cell(shape)
element = basix.ufl.element(
basix.ElementFamily.P,
cell.cellname(),
degree,
basix.LagrangeVariant.equispaced,
shape=(gdim,),
dtype=dtype, # type: ignore[arg-type]
)
return ufl.Mesh(element)
def cell_perm_array(cell_type: CellType, num_nodes: int) -> list[int]:
"""The permutation array for permuting Gmsh ordering to DOLFINx
ordering.
Args:
cell_type: DOLFINx cell type.
num_nodes: Number of nodes in the cell.
Returns:
An array ``p`` such that ``a_dolfinx[i] = a_gmsh[p[i]]``.
"""
return _cpp.io.perm_gmsh(cell_type, num_nodes)
def extract_topology_and_markers(
model, name: str | None = None
) -> tuple[dict[int, TopologyDict], dict[str, PhysicalGroup]]:
"""Extract all entities tagged with a physical marker in the gmsh
model.
Returns a nested dictionary where the first key is the gmsh MSH
element type integer. Each element type present in the model
contains the cell topology of the elements and corresponding
markers.
Args:
model: Gmsh model.
name: Name of the gmsh model. If not set the current
model will be used.
Returns:
A tuple ``(topologies, physical_groups)``, where ``topologies`` is
a nested dictionary where each key corresponds to a gmsh cell type.
Each cell type found in the mesh has a 2D array containing the
topology of the marked cell and a list with the corresponding
markers. ``physical_groups`` is a dictionary where the key is the
physical name and the value is a tuple with the dimension and tag.
"""
if name is not None:
model.setCurrent(name)
# Get the physical groups from gmsh in the form [(dim1, tag1),
# (dim1, tag2), (dim2, tag3),...]
phys_grps = model.getPhysicalGroups()
topologies: dict[int, TopologyDict] = {}
# Create a dictionary with the physical groups where the key is the
# physical name and the value is a tuple with the dimension and tag
physical_groups: dict[str, PhysicalGroup] = {}
for dim, tag in phys_grps:
# Get the entities of dimension `dim`, dim=0 -> Points, dim=1 -
# >Lines, dim=2 -> Triangles/Quadrilaterals, etc.
entities = model.getEntitiesForPhysicalGroup(dim, tag)
for entity in entities:
# Get cell type, list of cells with given tag and topology
# of tagged cells NOTE: Assumes that each entity only have
# one cell-type,
# i.e. facets of prisms and pyramid meshes are not supported
(entity_types, entity_tags, entity_topologies) = model.mesh.getElements(dim, tag=entity)
if len(entity_types) > 1:
raise RuntimeError(
f"Unsupported mesh with multiple cell types {entity_types} for entity {entity}"
)
elif len(entity_types) == 0:
continue
# Determine number of local nodes per element to create the
# topology of the elements
properties = model.mesh.getElementProperties(entity_types[0])
name, dim, _, num_nodes, _, _ = properties
# Array of shape (num_elements,num_nodes_per_element)
# containing the topology of the elements on this entity.
# NOTE: Gmsh indexing starts with one, we therefore subtract
# 1 from each node to use zero-based numbering
topology = entity_topologies[0].reshape(-1, num_nodes) - 1
# Create marker array of length of number of tagged cells
marker = np.full_like(entity_tags[0], tag)
# Keep track of entity tags to check tag consistency
entity_tags = entity_tags[0]
# Group element topology and markers of the same entity type
entity_type = entity_types[0]
if entity_type in topologies.keys():
topologies[entity_type]["topology"] = np.concatenate(
(topologies[entity_type]["topology"], topology), axis=0
)
topologies[entity_type]["cell_data"] = np.hstack(
[topologies[entity_type]["cell_data"], marker]
)
topologies[entity_type]["entity_tags"] = np.hstack(
[topologies[entity_type]["entity_tags"], entity_tags]
)
else:
topologies[entity_type] = {
"topology": topology,
"cell_data": marker,
"entity_tags": entity_tags,
}
physical_groups[model.getPhysicalName(dim, tag)] = PhysicalGroup(dim, tag)
return topologies, physical_groups
def extract_geometry(model, name: str | None = None) -> npt.NDArray[np.float64]:
"""Extract the mesh geometry from a Gmsh model.
Returns an array of shape ``(num_nodes, 3)``, where the i-th row
corresponds to the i-th node in the mesh.
Args:
model: Gmsh model
name: Name of the Gmsh model. If not set the current
model will be used.
Returns:
The mesh geometry as an array of shape ``(num_nodes, 3)``.
"""
if name is not None:
model.setCurrent(name)
# Get the unique tag and coordinates for nodes in mesh
indices, points, _ = model.mesh.getNodes()
points = points.reshape(-1, 3)
# Gmsh indices starts at 1. We therefore subtract one to use
# zero-based numbering
indices -= 1
# In some cases, Gmsh does not return the points in the same
# order as their unique node index. We therefore sort nodes in
# geometry according to the unique index
perm_sort = np.argsort(indices)
assert np.all(indices[perm_sort] == np.arange(len(indices)))
return points[perm_sort]
def model_to_mesh(
model,
comm: _MPI.Comm,
rank: int,
gdim: int = 3,
partitioner: Callable[[_MPI.Comm, int, int, _AdjacencyList_int32], _AdjacencyList_int32]
| None = None,
dtype=default_real_type,
) -> MeshData:
"""Create a Mesh from a Gmsh model.
Creates a :class:`dolfinx.mesh.Mesh` from the physical entities of
the highest topological dimension in the Gmsh model. In parallel,
the gmsh model is processed on one MPI rank, and the
:class:`dolfinx.mesh.Mesh` is distributed across ranks.
Args:
model: Gmsh model.
comm: MPI communicator to use for mesh creation.
rank: MPI rank that the Gmsh model is initialized on.
gdim: Geometrical dimension of the mesh.
partitioner: Function that computes the parallel
distribution of cells across MPI ranks.
Returns:
MeshData with mesh and tags of corresponding entities by
codimension. Codimension 0 is the cell tags, codimension 1 is the
facet tags, codimension 2 is the ridge tags and codimension 3 is
the peak tags as well as a lookup table from the physical groups by
name to integer.
Note:
For performance, this function should only be called once for
large problems. For reuse, it is recommended to save the mesh
and corresponding tags using :class:`dolfinx.io.XDMFFile` after
creation for efficient access.
"""
valid_mesh = None
if comm.rank == rank:
assert model is not None, "Gmsh model is None on rank responsible for mesh creation."
# Get mesh geometry and mesh topology for each element
x = extract_geometry(model)
topologies, physical_groups = extract_topology_and_markers(model)
valid_mesh = len(physical_groups) > 0
# Extract Gmsh entity (cell) id, topological dimension and number
# of nodes which is used to create an appropriate coordinate
# element, and seperate higher topological entities from lower
# topological entities (e.g. facets, ridges and peaks).
num_unique_entities = len(topologies.keys())
element_ids = np.zeros(num_unique_entities, dtype=np.int32)
entity_tdim = np.zeros(num_unique_entities, dtype=np.int32)
num_nodes_per_element = np.zeros(num_unique_entities, dtype=np.int32)
for i, element in enumerate(topologies.keys()):
_, dim, _, num_nodes, _, _ = model.mesh.getElementProperties(element)
element_ids[i] = element
entity_tdim[i] = dim
num_nodes_per_element[i] = num_nodes
# Broadcast information to all other ranks
entity_tdim, element_ids, num_nodes_per_element = comm.bcast(
(entity_tdim, element_ids, num_nodes_per_element), root=rank
)
else:
entity_tdim, element_ids, num_nodes_per_element = comm.bcast((None, None, None), root=rank)
valid_mesh = comm.bcast(valid_mesh, root=rank)
if not valid_mesh:
raise RuntimeError("No 'physical groups' in gmsh mesh. Cannot continue.")
# Sort elements by descending dimension
assert len(np.unique(entity_tdim)) == len(entity_tdim)
perm_sort = np.argsort(entity_tdim)[::-1]
# Extract position of the highest topological entity and its
# topological dimension
cell_position = perm_sort[0]
tdim = int(entity_tdim[cell_position])
# Check that all cells are tagged once
error_msg = ""
if comm.rank == rank:
_elementTypes, _elementTags, _nodeTags = model.mesh.getElements(dim=tdim, tag=-1)
_elementType_dim = _elementTypes[0]
if _elementType_dim not in topologies.keys():
error_msg = "All cells are expected to be tagged once; none found"
num_cells_tagged = len(topologies[_elementType_dim]["entity_tags"])
if (num_cells := len(_elementTags[0])) != num_cells_tagged:
error_msg = (
"All cells are expected to be tagged once;"
+ f"found: {num_cells_tagged}, expected: {num_cells}"
)
num_cells_tagged_once = len(np.unique(topologies[_elementType_dim]["entity_tags"]))
if num_cells_tagged != num_cells_tagged_once:
error_msg = "All cells are expected to be tagged once, found duplicates"
error_msg = comm.bcast(error_msg, root=rank)
if error_msg != "":
raise RuntimeError(error_msg)
# Extract entity -> node connectivity for all cells and sub-entities
# marked in the GMSH model
meshtags: dict[int, tuple[npt.NDArray[np.int64], npt.NDArray[np.int32]]] = {}
for position in perm_sort:
codim = tdim - entity_tdim[position]
if comm.rank == rank:
gmsh_entity_id = element_ids[position]
marked_entities = np.asarray(topologies[gmsh_entity_id]["topology"], dtype=np.int64)
entity_values = np.asarray(topologies[gmsh_entity_id]["cell_data"], dtype=np.int32)
meshtags[codim] = (marked_entities, entity_values)
else:
# Any other process than input rank does not have any entities
marked_entities = np.empty((0, num_nodes_per_element[position]), dtype=np.int32)
entity_values = np.empty((0,), dtype=np.int32)
meshtags[codim] = (marked_entities, entity_values)
# Create a UFL Mesh object for the GMSH element with the highest
# topoligcal dimension
ufl_domain = ufl_mesh(element_ids[cell_position], gdim, dtype=dtype)
# Get cell->node connectivity and permute to FEniCS ordering
num_nodes = num_nodes_per_element[cell_position]
gmsh_cell_perm = cell_perm_array(_cpp.mesh.to_type(str(ufl_domain.ufl_cell())), num_nodes)
cell_connectivity = meshtags[0][0][:, gmsh_cell_perm].copy()
# Create a distributed mesh, where mesh nodes are only destributed from
# the input rank
if comm.rank != rank:
x = np.empty([0, gdim], dtype=dtype) # No nodes on other than root rank
mesh = create_mesh(
comm, cell_connectivity, ufl_domain, x[:, :gdim].astype(dtype, copy=False), partitioner
)
assert tdim == mesh.topology.dim, (
f"{mesh.topology.dim=} does not match Gmsh model dimension {tdim}"
)
# Create MeshTags for all sub entities
topology = mesh.topology
codim_to_name = {0: "cell", 1: "facet", 2: "ridge", 3: "peak"}
dolfinx_meshtags: dict[str, MeshTags | None] = {}
for codim in [0, 1, 2, 3]:
key = f"{codim_to_name[codim]}_tags"
if (
codim == 1 and topology.cell_type == CellType.prism
) or topology.cell_type == CellType.pyramid:
raise RuntimeError(f"Unsupported facet tag for type {topology.cell_type}")
meshtag_data = meshtags.get(codim, None)
if meshtag_data is None:
dolfinx_meshtags[key] = None
continue
# Distribute entity data [[e0_v0, e0_v1, ...], [e1_v0, e1_v1, ...],
# ...] which is made in global input indices to local indices on
# the owning process
(marked_entities, entity_values) = meshtag_data
local_entities, local_values = distribute_entity_data(
mesh, tdim - codim, marked_entities, entity_values
)
# Create MeshTags object from the local entities
mesh.topology.create_connectivity(tdim - codim, tdim)
adj = adjacencylist(local_entities)
et = meshtags_from_entities(
mesh, tdim - codim, adj, local_values.astype(np.int32, copy=False)
)
et.name = key
dolfinx_meshtags[key] = et
# Broadcast physical groups (string to integer mapping) to all ranks
if comm.rank == rank:
physical_groups = comm.bcast(physical_groups, root=rank)
else:
physical_groups = comm.bcast(None, root=rank)
return MeshData(mesh, physical_groups=physical_groups, **dolfinx_meshtags)
def read_from_msh(
filename: str | Path,
comm: _MPI.Comm,
rank: int = 0,
gdim: int = 3,
partitioner: Callable[[_MPI.Comm, int, int, AdjacencyList], _AdjacencyList_int32] | None = None,
) -> MeshData:
"""Read a Gmsh .msh file and return a :class:`dolfinx.mesh.Mesh` and
cell facet markers.
Note:
This function requires the Gmsh Python module.
Args:
filename: Name of ``.msh`` file.
comm: MPI communicator to create the mesh on.
rank: Rank of ``comm`` responsible for reading the ``.msh``
file.
gdim: Geometric dimension of the mesh
Returns:
Meshdata with mesh, cell tags, facet tags, edge tags,
vertex tags and physical groups.
"""
try:
import gmsh
except ModuleNotFoundError:
# Python 3.11+ adds the add_note method to exceptions
# e.add_note("Gmsh must be installed to import dolfinx.io.gmsh")
raise ModuleNotFoundError(
"No module named 'gmsh': dolfinx.io.gmsh.read_from_msh requires Gmsh.", name="gmsh"
)
if comm.rank == rank:
gmsh.initialize()
gmsh.model.add("Mesh from file")
gmsh.merge(str(filename))
msh = model_to_mesh(gmsh.model, comm, rank, gdim=gdim, partitioner=partitioner)
gmsh.finalize()
return msh
else:
return model_to_mesh(gmsh.model, comm, rank, gdim=gdim, partitioner=partitioner)
|