1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
# Copyright (C) 2019-2024 Garth N. Wells
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Tests for custom Python assemblers."""
import math
import time
from mpi4py import MPI
try:
import numba
from ffcx.codegeneration.utils import get_void_pointer
except ImportError:
pass
import numpy as np
import pytest
import dolfinx
import ufl
from dolfinx.fem import Function, form, functionspace
from dolfinx.mesh import create_unit_square
cffi = pytest.importorskip("cffi")
cffi_support = pytest.importorskip("numba.core.typing.cffi_utils")
numba = pytest.importorskip("numba")
ffi = cffi.FFI()
# See https://github.com/numba/numba/issues/4036 for why we need 'sink'
@numba.njit
def sink(*args):
pass
@numba.njit(fastmath=True)
def area(x0, x1, x2) -> float:
"""Compute the area of a triangle embedded in 2D from the three vertices"""
a = (x1[0] - x2[0]) ** 2 + (x1[1] - x2[1]) ** 2
b = (x0[0] - x2[0]) ** 2 + (x0[1] - x2[1]) ** 2
c = (x0[0] - x1[0]) ** 2 + (x0[1] - x1[1]) ** 2
return math.sqrt(2 * (a * b + a * c + b * c) - (a**2 + b**2 + c**2)) / 4.0
@numba.njit(fastmath=True)
def assemble_vector(b, mesh, dofmap, num_cells):
"""Assemble simple linear form over a mesh into the array b"""
v, x = mesh
q0, q1 = 1 / 3.0, 1 / 3.0
for cell in range(num_cells):
# FIXME: This assumes a particular geometry dof layout
A = area(x[v[cell, 0]], x[v[cell, 1]], x[v[cell, 2]])
b[dofmap[cell, 0]] += A * (1.0 - q0 - q1)
b[dofmap[cell, 1]] += A * q0
b[dofmap[cell, 2]] += A * q1
@numba.njit(parallel=(not numba.core.config.IS_32BITS), fastmath=True)
def assemble_vector_parallel(b, v, x, dofmap_t_data, dofmap_t_offsets, num_cells):
"""Assemble simple linear form over a mesh into the array b using a parallel loop"""
q0 = 1 / 3.0
q1 = 1 / 3.0
b_unassembled = np.empty((num_cells, 3), dtype=b.dtype)
for cell in numba.prange(num_cells):
# FIXME: This assumes a particular geometry dof layout
A = area(x[v[cell, 0]], x[v[cell, 1]], x[v[cell, 2]])
b_unassembled[cell, 0] = A * (1.0 - q0 - q1)
b_unassembled[cell, 1] = A * q0
b_unassembled[cell, 2] = A * q1
# Accumulate values in RHS
_b_unassembled = b_unassembled.reshape(num_cells * 3)
for index in numba.prange(dofmap_t_offsets.shape[0] - 1):
for p in range(dofmap_t_offsets[index], dofmap_t_offsets[index + 1]):
b[index] += _b_unassembled[dofmap_t_data[p]]
@numba.njit(fastmath=True)
def assemble_vector_ufc(b, kernel, mesh, dofmap, num_cells, dtype):
"""Assemble provided FFCx/UFC kernel over a mesh into the array b"""
v, x = mesh
entity_local_index = np.array([0], dtype=np.intc)
perm = np.array([0], dtype=np.uint8)
geometry = np.zeros((3, 3), dtype=x.dtype)
coeffs = np.zeros(1, dtype=dtype)
constants = np.zeros(1, dtype=dtype)
custom_data = np.zeros(1, dtype=np.int64)
custom_data_ptr = get_void_pointer(custom_data)
b_local = np.zeros(3, dtype=dtype)
for cell in range(num_cells):
# FIXME: This assumes a particular geometry dof layout
for j in range(3):
geometry[j] = x[v[cell, j], :]
b_local.fill(0.0)
kernel(
ffi.from_buffer(b_local),
ffi.from_buffer(coeffs),
ffi.from_buffer(constants),
ffi.from_buffer(geometry),
ffi.from_buffer(entity_local_index),
ffi.from_buffer(perm),
custom_data_ptr,
)
for j in range(3):
b[dofmap[cell, j]] += b_local[j]
@pytest.mark.parametrize(
"dtype",
[
np.float32,
np.float64,
pytest.param(
np.complex64,
marks=[
pytest.mark.xfail_win32_complex,
pytest.mark.skipif(
cffi.__version_info__ > (1, 16, 99) and cffi.__version_info__ <= (2, 0, 0),
reason="bug in cffi 1.17.0/1 and 2.0.0 for complex",
),
],
),
pytest.param(
np.complex128,
marks=[
pytest.mark.xfail_win32_complex,
pytest.mark.skipif(
cffi.__version_info__ > (1, 16, 99) and cffi.__version_info__ <= (2, 0, 0),
reason="bug in cffi 1.17.0/1 and 2.0.0 for complex",
),
],
),
],
)
def test_custom_mesh_loop_rank1(dtype):
mesh = create_unit_square(MPI.COMM_WORLD, 64, 64, dtype=dtype(0).real.dtype)
V = functionspace(mesh, ("Lagrange", 1))
# Unpack mesh and dofmap data
num_owned_cells = mesh.topology.index_map(mesh.topology.dim).size_local
x_dofs = mesh.geometry.dofmap
x = mesh.geometry.x
dofmap = V.dofmap.list
# Assemble with pure Numba function (two passes, first will include
# JIT overhead)
b0 = Function(V, dtype=dtype)
for i in range(2):
b = b0.x.array
b[:] = 0.0
start = time.time()
assemble_vector(b, (x_dofs, x), dofmap, num_owned_cells)
end = time.time()
print(f"Time (numba, pass {i}): {end - start}")
b0.x.scatter_reverse(dolfinx.la.InsertMode.add)
b0sum = np.sum(b0.x.array[: b0.x.index_map.size_local * b0.x.block_size])
assert mesh.comm.allreduce(b0sum, op=MPI.SUM) == pytest.approx(1.0)
# NOTE: Parallel (threaded) Numba can cause problems with MPI
# Assemble with pure Numba function using parallel loop (two passes,
# first will include JIT overhead)
# from dolfinx.fem import transpose_dofmap
# dofmap_t = transpose_dofmap(V.dofmap.list, num_owned_cells)
# btmp = Function(V)
# for i in range(2):
# b = btmp.x.array
# b[:] = 0.0
# start = time.time()
# assemble_vector_parallel(b, x_dofs, x, dofmap_t.array, dofmap_t.offsets, num_owned_cells)
# end = time.time()
# print("Time (numba parallel, pass {}): {}".format(i, end - start))
# btmp.x.scatter_reverse(dolfinx.la.InsertMode.add)
# assert (btmp.x.array - b0.x.array).norm() == pytest.approx(0.0)
# Test against generated code and general assembler
v = ufl.TestFunction(V)
L = ufl.inner(1.0, v) * ufl.dx
Lf = form(L, dtype=dtype)
start = time.time()
b1 = dolfinx.fem.assemble_vector(Lf)
end = time.time()
print("Time (C++, pass 0):", end - start)
b1.array[:] = 0
start = time.time()
dolfinx.fem.assemble_vector(b1.array, Lf)
end = time.time()
print("Time (C++, pass 1):", end - start)
b1.scatter_reverse(dolfinx.la.InsertMode.add)
assert np.linalg.norm(b1.array - b0.x.array) == pytest.approx(0.0, abs=1.0e-8)
# Assemble using generated tabulate_tensor kernel and Numba
# assembler
b3 = Function(V, dtype=dtype)
ufcx_form, _module, _code = dolfinx.jit.ffcx_jit(
mesh.comm, L, form_compiler_options={"scalar_type": dtype}
)
# Get the one and only kernel
kernel = getattr(ufcx_form.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}")
for i in range(2):
b = b3.x.array
b[:] = 0.0
start = time.time()
assemble_vector_ufc(b, kernel, (x_dofs, x), dofmap, num_owned_cells, dtype)
end = time.time()
print(f"Time (numba/cffi, pass {i}): {end - start}")
b3.x.scatter_reverse(dolfinx.la.InsertMode.add)
assert np.linalg.norm(b3.x.array - b0.x.array) == pytest.approx(0.0, abs=1e-8)
|