File: test_petsc_solver_wrappers.py

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post4-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,028 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 226; sh: 171; xml: 55
file content (238 lines) | stat: -rw-r--r-- 9,110 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (C) 2024-2025 Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later
"""Unit tests for high-level wrapper around PETSc for linear and non-linear problems"""

from mpi4py import MPI

import numpy as np
import pytest

import basix.ufl
import dolfinx
import ufl


@pytest.mark.petsc4py
class TestPETScSolverWrappers:
    @pytest.mark.parametrize(
        "mode",
        [dolfinx.mesh.GhostMode.none, dolfinx.mesh.GhostMode.shared_facet],
    )
    @pytest.mark.filterwarnings("ignore::DeprecationWarning")
    def test_compare_solution_linear_vs_nonlinear_problem(self, mode):
        """Test that the wrapper for Linear problem and NonlinearProblem give the same result"""
        from petsc4py import PETSc

        import dolfinx.fem.petsc
        import dolfinx.nls.petsc

        msh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
        V = dolfinx.fem.functionspace(msh, ("Lagrange", 1))
        uh = dolfinx.fem.Function(V)
        v = ufl.TestFunction(V)
        x = ufl.SpatialCoordinate(msh)
        f = x[0] * ufl.sin(x[1])
        F = ufl.inner(uh, v) * ufl.dx - ufl.inner(f, v) * ufl.dx
        u = ufl.TrialFunction(V)
        a = ufl.replace(F, {uh: u})

        sys = PETSc.Sys()
        if MPI.COMM_WORLD.size == 1:
            factor_type = "petsc"
        elif sys.hasExternalPackage("mumps"):
            factor_type = "mumps"
        elif sys.hasExternalPackage("superlu_dist"):
            factor_type = "superlu_dist"
        else:
            pytest.skip("No external solvers available in parallel")

        petsc_options_linear = {
            "ksp_type": "preonly",
            "pc_type": "lu",
            "pc_factor_mat_solver_type": factor_type,
        }
        petsc_options_prefix_linear = (
            f"test_compare_solution_linear_vs_nonlinear_problem__{mode}_linear_"
        )
        linear_problem = dolfinx.fem.petsc.LinearProblem(
            ufl.lhs(a),
            ufl.rhs(a),
            petsc_options_prefix=petsc_options_prefix_linear,
            petsc_options=petsc_options_linear,
        )
        u_lin = linear_problem.solve()
        assert linear_problem.solver.getConvergedReason() > 0

        # Compare LinearProblem solution against the one obtained by
        # legacy NewtonSolverNonlinearProblem
        u_nonlin_legacy = dolfinx.fem.Function(V)
        nonlinear_problem_legacy = dolfinx.fem.petsc.NewtonSolverNonlinearProblem(
            ufl.replace(F, {uh: u_nonlin_legacy}), u_nonlin_legacy
        )
        nonlinear_solver_legacy = dolfinx.nls.petsc.NewtonSolver(msh.comm, nonlinear_problem_legacy)
        ksp = nonlinear_solver_legacy.krylov_solver
        ksp.setType("preonly")
        ksp.getPC().setType("lu")
        ksp.getPC().setFactorSolverType(factor_type)

        eps = 100 * np.finfo(dolfinx.default_scalar_type).eps

        nonlinear_solver_legacy.atol = eps
        nonlinear_solver_legacy.rtol = eps
        nonlinear_solver_legacy.solve(u_nonlin_legacy)

        assert np.allclose(u_lin.x.array, u_nonlin_legacy.x.array, atol=eps, rtol=eps)

        with (
            u_lin.x.petsc_vec.localForm() as _u_lin,
            u_nonlin_legacy.x.petsc_vec.localForm() as _u_nonlin,
        ):
            assert np.allclose(_u_lin.array_r, _u_nonlin.array_r, atol=eps, rtol=eps)

        # Compare LinearProblem solution against the one obtained by NonlinearProblem
        petsc_options_nonlinear = {
            "ksp_type": "preonly",
            "pc_type": "lu",
            "pc_factor_mat_solver_type": factor_type,
            "snes_atol": eps,
            "snes_rtol": eps,
        }
        petsc_options_prefix_nonlinear = (
            f"test_compare_solution_linear_vs_nonlinear_problem__{mode}__nonlinear_"
        )
        u_nonlin = dolfinx.fem.Function(V)
        nonlinear_problem = dolfinx.fem.petsc.NonlinearProblem(
            ufl.replace(F, {uh: u_nonlin}),
            u_nonlin,
            petsc_options_prefix=petsc_options_prefix_nonlinear,
            petsc_options=petsc_options_nonlinear,
        )
        nonlinear_problem.solve()
        assert nonlinear_problem.solver.getConvergedReason() > 0

        assert np.allclose(u_lin.x.array, u_nonlin.x.array, atol=eps, rtol=eps)

        with u_lin.x.petsc_vec.localForm() as _u_lin, u_nonlin.x.petsc_vec.localForm() as _u_nonlin:
            assert np.allclose(_u_lin.array_r, _u_nonlin.array_r, atol=eps, rtol=eps)

    @pytest.mark.parametrize(
        "mode", [dolfinx.mesh.GhostMode.none, dolfinx.mesh.GhostMode.shared_facet]
    )
    @pytest.mark.parametrize("kind", [None, "mpi", "nest", [["aij", None], [None, "baij"]]])
    def test_mixed_system(self, mode, kind):
        from petsc4py import PETSc

        import dolfinx.fem.petsc

        sys = PETSc.Sys()
        if ((kind=="nest" or isinstance(kind, list))
            and not sys.hasExternalPackage("mumps")):
            pytest.skip("matrix type nest requires MUMPS")

        if sys.hasExternalPackage("mumps"):
            factor_type = "mumps"
        elif sys.hasExternalPackage("superlu_dist"):
            factor_type = "superlu_dist"
        elif MPI.COMM_WORLD.size == 1:
            factor_type = "petsc"
        else:
            pytest.skip("No external solvers available in parallel")

        msh = dolfinx.mesh.create_unit_square(
            MPI.COMM_WORLD, 12, 12, ghost_mode=mode, dtype=PETSc.RealType
        )

        def top_bc(x):
            return np.isclose(x[1], 1.0)

        msh.topology.create_connectivity(msh.topology.dim - 1, msh.topology.dim)
        bndry_facets = dolfinx.mesh.locate_entities_boundary(msh, msh.topology.dim - 1, top_bc)

        el_0 = basix.ufl.element("Lagrange", msh.basix_cell(), 1, dtype=PETSc.RealType)
        el_1 = basix.ufl.element("Lagrange", msh.basix_cell(), 2, dtype=PETSc.RealType)

        if kind is None:
            me = basix.ufl.mixed_element([el_0, el_1])
            W = dolfinx.fem.functionspace(msh, me)
            V, _ = W.sub(0).collapse()
            Q, _ = W.sub(1).collapse()
        else:
            V = dolfinx.fem.functionspace(msh, el_0)
            Q = dolfinx.fem.functionspace(msh, el_1)
            W = ufl.MixedFunctionSpace(V, Q)

        u, p = ufl.TrialFunctions(W)
        v, q = ufl.TestFunctions(W)

        a00 = ufl.inner(u, v) * ufl.dx
        a11 = ufl.inner(p, q) * ufl.dx
        x = ufl.SpatialCoordinate(msh)
        f = x[0] + 3 * x[1]
        g = -(x[1] ** 2) + x[0]
        L0 = ufl.inner(f, v) * ufl.dx
        L1 = ufl.inner(g, q) * ufl.dx

        f_expr = dolfinx.fem.Expression(f, V.element.interpolation_points)
        g_expr = dolfinx.fem.Expression(g, Q.element.interpolation_points)
        u_bc = dolfinx.fem.Function(V)
        u_bc.interpolate(f_expr)
        p_bc = dolfinx.fem.Function(Q)
        p_bc.interpolate(g_expr)

        if kind is None:
            a = a00 + a11
            L = L0 + L1
            dofs_V = dolfinx.fem.locate_dofs_topological(
                (W.sub(0), V), msh.topology.dim - 1, bndry_facets
            )
            dofs_Q = dolfinx.fem.locate_dofs_topological(
                (W.sub(1), Q), msh.topology.dim - 1, bndry_facets
            )
            bcs = [
                dolfinx.fem.dirichletbc(u_bc, dofs_V, W.sub(0)),
                dolfinx.fem.dirichletbc(p_bc, dofs_Q, W.sub(1)),
            ]
        else:
            a = [[a00, None], [None, a11]]
            L = [L0, L1]
            dofs_V = dolfinx.fem.locate_dofs_topological(V, msh.topology.dim - 1, bndry_facets)
            dofs_Q = dolfinx.fem.locate_dofs_topological(Q, msh.topology.dim - 1, bndry_facets)
            bcs = [
                dolfinx.fem.dirichletbc(u_bc, dofs_V),
                dolfinx.fem.dirichletbc(p_bc, dofs_Q),
            ]

        petsc_options_prefix = (
            f"test_mixed_system_{kind if isinstance(kind, str) else 'nest_2d_list'}_"
        )
        petsc_options = {
            "ksp_type": "preonly",
            "pc_type": "lu",
            "pc_factor_mat_solver_type": factor_type,
            "ksp_error_if_not_converged": True,
        }
        problem = dolfinx.fem.petsc.LinearProblem(
            a,
            L,
            bcs=bcs,
            kind=kind,
            petsc_options_prefix=petsc_options_prefix,
            petsc_options=petsc_options,
        )
        wh = problem.solve()
        assert problem.solver.getConvergedReason() > 0
        if kind is None:
            uh, ph = wh.split()
        else:
            uh, ph = wh
        error_uh = dolfinx.fem.form(ufl.inner(uh - f, uh - f) * ufl.dx)
        error_ph = dolfinx.fem.form(ufl.inner(ph - g, ph - g) * ufl.dx)
        local_uh_L2 = dolfinx.fem.assemble_scalar(error_uh)
        local_ph_L2 = dolfinx.fem.assemble_scalar(error_ph)
        global_uh_L2 = np.sqrt(msh.comm.allreduce(local_uh_L2, op=MPI.SUM))
        global_ph_L2 = np.sqrt(msh.comm.allreduce(local_ph_L2, op=MPI.SUM))
        tol = 500 * np.finfo(dolfinx.default_scalar_type).eps
        assert global_uh_L2 < tol and global_ph_L2 < tol