File: test_bounding_box_tree.py

package info (click to toggle)
fenics-dolfinx 1%3A0.10.0.post5-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,952 kB
  • sloc: cpp: 36,535; python: 25,391; makefile: 223; sh: 174; xml: 55
file content (601 lines) | stat: -rw-r--r-- 25,360 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# Copyright (C) 2013-2025 Anders Logg, Jørgen S. Dokken, Chris Richardson
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later
"""Unit tests for BoundingBoxTree"""

from mpi4py import MPI

import numpy as np
import pytest

from dolfinx.geometry import (
    bb_tree,
    compute_closest_entity,
    compute_colliding_cells,
    compute_collisions_points,
    compute_collisions_trees,
    compute_distance_gjk,
    create_midpoint_tree,
    determine_point_ownership,
)
from dolfinx.mesh import (
    CellType,
    compute_incident_entities,
    compute_midpoints,
    create_box,
    create_unit_cube,
    create_unit_interval,
    create_unit_square,
    entities_to_geometry,
    exterior_facet_indices,
    locate_entities,
    locate_entities_boundary,
)


def extract_geometricial_data(mesh, dim, entities):
    """For a set of entities in a mesh, return the coordinates of the
    vertices"""
    mesh_nodes = []
    geom = mesh.geometry
    g_indices = entities_to_geometry(mesh, dim, np.array(entities, dtype=np.int32), False)
    for cell in g_indices:
        nodes = np.zeros((len(cell), 3), dtype=np.float64)
        for j, entity in enumerate(cell):
            nodes[j] = geom.x[entity]
        mesh_nodes.append(nodes)
    return mesh_nodes


def expand_bbox(bbox, dtype):
    """Expand min max bbox to convex hull"""
    return np.array(
        [
            [bbox[0][0], bbox[0][1], bbox[0][2]],
            [bbox[0][0], bbox[0][1], bbox[1][2]],
            [bbox[0][0], bbox[1][1], bbox[0][2]],
            [bbox[1][0], bbox[0][1], bbox[0][2]],
            [bbox[1][0], bbox[0][1], bbox[1][2]],
            [bbox[1][0], bbox[1][1], bbox[0][2]],
            [bbox[0][0], bbox[1][1], bbox[1][2]],
            [bbox[1][0], bbox[1][1], bbox[1][2]],
        ],
        dtype=dtype,
    )


def find_colliding_cells(mesh, bbox, dtype):
    """Given a mesh and a bounding box((xmin, ymin, zmin), (xmax, ymax,
    zmax)) find all colliding cells"""

    # Find actual cells using known bounding box tree
    colliding_cells = []
    num_cells = mesh.topology.index_map(mesh.topology.dim).size_local
    x_indices = entities_to_geometry(
        mesh, mesh.topology.dim, np.arange(num_cells, dtype=np.int32), False
    )
    points = mesh.geometry.x
    bounding_box = expand_bbox(bbox, dtype)
    for cell in range(num_cells):
        vertex_coords = points[x_indices[cell]]
        bbox_cell = np.array([vertex_coords[0], vertex_coords[0]])
        # Create bounding box for cell
        for i in range(1, vertex_coords.shape[0]):
            for j in range(3):
                bbox_cell[0, j] = min(bbox_cell[0, j], vertex_coords[i, j])
                bbox_cell[1, j] = max(bbox_cell[1, j], vertex_coords[i, j])
        distance = compute_distance_gjk(expand_bbox(bbox_cell, dtype), bounding_box)
        if np.dot(distance, distance) < 1e-16:
            colliding_cells.append(cell)

    return colliding_cells


@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("padding", [True, False])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_padded_bbox(padding, dtype):
    """Test collision between two meshes separated by a distance of
    epsilon, and check if padding the mesh creates a possible
    collision"""
    eps = 1e-4
    x0 = np.array([0, 0, 0], dtype=dtype)
    x1 = np.array([1, 1, 1 - eps], dtype=dtype)
    mesh_0 = create_box(MPI.COMM_WORLD, [x0, x1], [1, 1, 2], CellType.hexahedron, dtype=dtype)
    x2 = np.array([0, 0, 1 + eps], dtype=dtype)
    x3 = np.array([1, 1, 2], dtype=dtype)
    mesh_1 = create_box(MPI.COMM_WORLD, [x2, x3], [1, 1, 2], CellType.hexahedron, dtype=dtype)
    if padding:
        pad = eps
    else:
        pad = 0

    bbox_0 = bb_tree(mesh_0, mesh_0.topology.dim, padding=pad)
    bbox_1 = bb_tree(mesh_1, mesh_1.topology.dim, padding=pad)
    collisions = compute_collisions_trees(bbox_0, bbox_1)
    if padding:
        assert len(collisions) == 1
        # Check that the colliding elements are separated by a distance
        # 2*epsilon
        element_0 = extract_geometricial_data(mesh_0, mesh_0.topology.dim, [collisions[0][0]])[0]
        element_1 = extract_geometricial_data(mesh_1, mesh_1.topology.dim, [collisions[0][1]])[0]
        distance = np.linalg.norm(compute_distance_gjk(element_0, element_1))
        assert np.isclose(distance, 2 * eps, rtol=1.0e-5, atol=1.0e-7)
    else:
        assert len(collisions) == 0


def rotation_matrix(axis, angle):
    # See https://en.wikipedia.org/wiki/Rotation_matrix,
    # Subsection: Rotation_matrix_from_axis_and_angle.
    if np.isclose(np.inner(axis, axis), 1):
        n_axis = axis
    else:
        # Normalize axis
        n_axis = axis / np.sqrt(np.inner(axis, axis))

    # Define cross product matrix of axis
    axis_x = np.array(
        [[0, -n_axis[2], n_axis[1]], [n_axis[2], 0, -n_axis[0]], [-n_axis[1], n_axis[0], 0]]
    )
    id = np.cos(angle) * np.eye(3)
    outer = (1 - np.cos(angle)) * np.outer(n_axis, n_axis)
    return np.sin(angle) * axis_x + id + outer


@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_empty_tree(dtype):
    mesh = create_unit_interval(MPI.COMM_WORLD, 16, dtype=dtype)
    bbtree = bb_tree(mesh, mesh.topology.dim, padding=0.0, entities=np.empty(0, dtype=dtype))
    assert bbtree.num_bboxes == 0


@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_compute_collisions_point_1d(dtype):
    N = 16
    p = np.array([0.3, 0, 0], dtype=dtype)
    mesh = create_unit_interval(MPI.COMM_WORLD, N, dtype=dtype)
    dx = 1 / N
    cell_index = int(p[0] // dx)
    # Vertices of cell we should collide with
    vertices = np.array([[dx * cell_index, 0, 0], [dx * (cell_index + 1), 0, 0]], dtype=dtype)

    # Compute collision
    tdim = mesh.topology.dim
    tree = bb_tree(mesh, tdim, padding=0.0)
    entities = compute_collisions_points(tree, p)
    assert len(entities.array) == 1

    # Get the vertices of the geometry
    geom_entities = entities_to_geometry(mesh, tdim, entities.array, False)[0]
    x = mesh.geometry.x
    cell_vertices = x[geom_entities]
    # Check that we get the cell with correct vertices
    assert np.allclose(cell_vertices, vertices)


@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("point", [np.array([0.52, 0, 0]), np.array([0.9, 0, 0])])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_compute_collisions_tree_1d(point, dtype):
    mesh_A = create_unit_interval(MPI.COMM_WORLD, 16, dtype=dtype)

    def locator_A(x):
        return x[0] >= point[0]

    # Locate all vertices of mesh A that should collide
    vertices_A = locate_entities(mesh_A, 0, locator_A)
    mesh_A.topology.create_connectivity(0, mesh_A.topology.dim)
    v_to_c = mesh_A.topology.connectivity(0, mesh_A.topology.dim)

    # Find all cells connected to vertex in the collision bounding box
    cells_A = np.sort(np.unique(np.hstack([v_to_c.links(vertex) for vertex in vertices_A])))

    mesh_B = create_unit_interval(MPI.COMM_WORLD, 16, dtype=dtype)
    bgeom = mesh_B.geometry.x
    bgeom += point

    def locator_B(x):
        return x[0] <= 1

    # Locate all vertices of mesh B that should collide
    vertices_B = locate_entities(mesh_B, 0, locator_B)
    mesh_B.topology.create_connectivity(0, mesh_B.topology.dim)
    v_to_c = mesh_B.topology.connectivity(0, mesh_B.topology.dim)

    # Find all cells connected to vertex in the collision bounding box
    cells_B = np.sort(np.unique(np.hstack([v_to_c.links(vertex) for vertex in vertices_B])))

    # Find colliding entities using bounding box trees
    tree_A = bb_tree(mesh_A, mesh_A.topology.dim, padding=0.0)
    tree_B = bb_tree(mesh_B, mesh_B.topology.dim, padding=0.0)
    entities = compute_collisions_trees(tree_A, tree_B)
    entities_A = np.sort(np.unique([q[0] for q in entities]))
    entities_B = np.sort(np.unique([q[1] for q in entities]))
    assert np.allclose(entities_A, cells_A)
    assert np.allclose(entities_B, cells_B)


@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("point", [np.array([0.52, 0.51, 0.0]), np.array([0.9, -0.9, 0.0])])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_compute_collisions_tree_2d(point, dtype):
    mesh_A = create_unit_square(MPI.COMM_WORLD, 3, 3, dtype=dtype)
    mesh_B = create_unit_square(MPI.COMM_WORLD, 5, 5, dtype=dtype)
    bgeom = mesh_B.geometry.x
    bgeom += point
    tree_A = bb_tree(mesh_A, mesh_A.topology.dim, padding=0.0)
    tree_B = bb_tree(mesh_B, mesh_B.topology.dim, padding=0.0)
    entities = compute_collisions_trees(tree_A, tree_B)

    entities_A = np.sort(np.unique([q[0] for q in entities]))
    entities_B = np.sort(np.unique([q[1] for q in entities]))
    cells_A = find_colliding_cells(mesh_A, tree_B.get_bbox(tree_B.num_bboxes - 1), dtype)
    cells_B = find_colliding_cells(mesh_B, tree_A.get_bbox(tree_A.num_bboxes - 1), dtype)
    assert np.allclose(entities_A, cells_A)
    assert np.allclose(entities_B, cells_B)


@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("point", [np.array([0.52, 0.51, 0.3]), np.array([0.9, -0.9, 0.3])])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_compute_collisions_tree_3d(point, dtype):
    mesh_A = create_unit_cube(MPI.COMM_WORLD, 2, 2, 2, dtype=dtype)
    mesh_B = create_unit_cube(MPI.COMM_WORLD, 2, 2, 2, dtype=dtype)

    bgeom = mesh_B.geometry.x
    bgeom += point

    tree_A = bb_tree(mesh_A, mesh_A.topology.dim, padding=0.0)
    tree_B = bb_tree(mesh_B, mesh_B.topology.dim, padding=0.0)
    entities = compute_collisions_trees(tree_A, tree_B)
    entities_A = np.sort(np.unique([q[0] for q in entities]))
    entities_B = np.sort(np.unique([q[1] for q in entities]))
    cells_A = find_colliding_cells(mesh_A, tree_B.get_bbox(tree_B.num_bboxes - 1), dtype)
    cells_B = find_colliding_cells(mesh_B, tree_A.get_bbox(tree_A.num_bboxes - 1), dtype)
    assert np.allclose(entities_A, cells_A)
    assert np.allclose(entities_B, cells_B)


@pytest.mark.parametrize("dim", [0, 1])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_compute_closest_entity_1d(dim, dtype):
    ref_distance = 0.75
    N = 16
    points = np.array([[-ref_distance, 0, 0], [2 / N, 2 * ref_distance, 0]], dtype=dtype)
    mesh = create_unit_interval(MPI.COMM_WORLD, N, dtype=dtype)
    tree = bb_tree(mesh, dim, padding=0.0)
    num_entities_local = (
        mesh.topology.index_map(dim).size_local + mesh.topology.index_map(dim).num_ghosts
    )
    entities = np.arange(num_entities_local, dtype=np.int32)
    midpoint_tree = create_midpoint_tree(mesh, dim, entities)
    closest_entities = compute_closest_entity(tree, midpoint_tree, mesh, points)

    # Find which entity is colliding with known closest point on mesh
    p_c = np.array([[0, 0, 0], [2 / N, 0, 0]], dtype=dtype)
    colliding_entity_bboxes = compute_collisions_points(tree, p_c)

    # Refine search by checking for actual collision if the entities are
    # cells
    if dim == mesh.topology.dim:
        colliding_cells = compute_colliding_cells(mesh, colliding_entity_bboxes, p_c)
        for i in range(points.shape[0]):
            # If colliding entity is on process
            if colliding_cells.links(i).size > 0:
                assert np.isin(closest_entities[i], colliding_cells.links(i))
    else:
        for i in range(points.shape[0]):
            # Only check closest entity if any bounding box on the
            # process intersects with the point
            if colliding_entity_bboxes.links(i).size > 0:
                assert np.isin(closest_entities[i], colliding_entity_bboxes.links(i))


@pytest.mark.parametrize("dim", [0, 1, 2])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_compute_closest_entity_2d(dim, dtype):
    points = np.array([-1.0, -0.01, 0.0], dtype=dtype)
    mesh = create_unit_square(MPI.COMM_WORLD, 15, 15, dtype=dtype)
    mesh.topology.create_entities(dim)
    tree = bb_tree(mesh, dim, padding=0.0)
    num_entities_local = (
        mesh.topology.index_map(dim).size_local + mesh.topology.index_map(dim).num_ghosts
    )
    entities = np.arange(num_entities_local, dtype=np.int32)
    midpoint_tree = create_midpoint_tree(mesh, dim, entities)

    # Find which entity is colliding with known closest point on mesh
    closest_entities = compute_closest_entity(tree, midpoint_tree, mesh, points)

    # Find which entity is colliding with known closest point on mesh
    p_c = np.array([0, 0, 0], dtype=dtype)
    colliding_entity_bboxes = compute_collisions_points(tree, p_c)

    # Refine search by checking for actual collision if the entities are
    # cells
    if dim == mesh.topology.dim:
        colliding_cells = compute_colliding_cells(mesh, colliding_entity_bboxes, p_c).array
        if len(colliding_cells) > 0:
            assert np.isin(closest_entities[0], colliding_cells)
    else:
        if len(colliding_entity_bboxes.links(0)) > 0:
            assert np.isin(closest_entities[0], colliding_entity_bboxes.links(0))


@pytest.mark.parametrize("dim", [1, 2, 3])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_compute_closest_entity_3d(dim, dtype):
    points = np.array([[0.9, 0, 1.135]], dtype=dtype)
    mesh = create_unit_cube(MPI.COMM_WORLD, 8, 8, 8, dtype=dtype)
    mesh.topology.create_entities(dim)

    tree = bb_tree(mesh, dim, padding=0.0)
    num_entities_local = (
        mesh.topology.index_map(dim).size_local + mesh.topology.index_map(dim).num_ghosts
    )
    entities = np.arange(num_entities_local, dtype=np.int32)
    midpoint_tree = create_midpoint_tree(mesh, dim, entities)
    closest_entities = compute_closest_entity(tree, midpoint_tree, mesh, points)

    # Find which entity is colliding with known closest point on mesh
    p_c = np.array([0.9, 0, 1], dtype=dtype)
    colliding_entity_bboxes = compute_collisions_points(tree, p_c)

    # Refine search by checking for actual collision if the entities are
    # cells
    if dim == mesh.topology.dim:
        colliding_cells = compute_colliding_cells(mesh, colliding_entity_bboxes, p_c).array
        if len(colliding_cells) > 0:
            assert np.isin(closest_entities[0], colliding_cells)
    else:
        if len(colliding_entity_bboxes.links(0)) > 0:
            assert np.isin(closest_entities[0], colliding_entity_bboxes.links(0))


@pytest.mark.parametrize("dim", [1, 2, 3])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_compute_closest_sub_entity(dim, dtype):
    """Compute distance from subset of cells in a mesh to a point inside the mesh"""
    ref_distance = 0.31
    xc, yc, zc = 0.5, 0.5, 0.5
    points = np.array([xc + ref_distance, yc, zc], dtype=dtype)
    mesh = create_unit_cube(MPI.COMM_WORLD, 8, 8, 8, dtype=dtype)
    mesh.topology.create_entities(dim)
    left_entities = locate_entities(mesh, dim, lambda x: x[0] <= xc)
    tree = bb_tree(mesh, dim, padding=0.0, entities=left_entities)
    midpoint_tree = create_midpoint_tree(mesh, dim, left_entities)
    closest_entities = compute_closest_entity(tree, midpoint_tree, mesh, points)

    # Find which entity is colliding with known closest point on mesh
    p_c = np.array([xc, yc, zc], dtype=dtype)
    colliding_entity_bboxes = compute_collisions_points(tree, p_c)

    # Refine search by checking for actual collision if the entities are
    # cells
    if dim == mesh.topology.dim:
        colliding_cells = compute_colliding_cells(mesh, colliding_entity_bboxes, p_c).array
        if len(colliding_cells) > 0:
            assert np.isin(closest_entities[0], colliding_cells)
    else:
        if len(colliding_entity_bboxes.links(0)) > 0:
            assert np.isin(closest_entities[0], colliding_entity_bboxes.links(0))


@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_surface_bbtree(dtype):
    """Test creation of BBTree on subset of entities(surface cells)"""
    mesh = create_unit_cube(MPI.COMM_WORLD, 8, 8, 8, dtype=dtype)
    mesh.topology.create_connectivity(mesh.topology.dim - 1, mesh.topology.dim)
    sf = exterior_facet_indices(mesh.topology)
    tdim = mesh.topology.dim
    f_to_c = mesh.topology.connectivity(tdim - 1, tdim)
    cells = np.array([f_to_c.links(f)[0] for f in sf], dtype=np.int32)
    bbtree = bb_tree(mesh, tdim, padding=0.0, entities=cells)

    # test collision (should not collide with any)
    p = np.array([0.5, 0.5, 0.5])
    assert len(compute_collisions_points(bbtree, p).array) == 0


@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_sub_bbtree_codim1(dtype):
    """Testing point collision with a BoundingBoxTree of sub entities"""
    mesh = create_unit_cube(MPI.COMM_WORLD, 4, 4, 4, cell_type=CellType.hexahedron, dtype=dtype)
    tdim = mesh.topology.dim
    fdim = tdim - 1

    top_facets = locate_entities_boundary(mesh, fdim, lambda x: np.isclose(x[2], 1))
    mesh.topology.create_connectivity(tdim - 1, tdim)
    cells = compute_incident_entities(mesh.topology, top_facets, fdim, tdim)
    bbtree = bb_tree(mesh, tdim, padding=0.0, entities=cells)

    # Compute a BBtree for all processes
    process_bbtree = bbtree.create_global_tree(mesh.comm)

    # Find possible ranks for this point
    point = np.array([0.2, 0.2, 1.0], dtype=dtype)
    ranks = compute_collisions_points(process_bbtree, point)

    # Compute local collisions
    cells = compute_collisions_points(bbtree, point)

    # Relationship to test: if cells has link => ranks must also hold a value.
    if len(cells.links(0)) > 0:
        assert len(ranks.links(0)) > 0

    # Negated: ranks holds no value => cells has no link
    if len(ranks.links(0)) == 0:
        assert len(cells.links(0)) == 0


@pytest.mark.parametrize("comm", [MPI.COMM_WORLD, MPI.COMM_SELF])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_serial_global_bb_tree(dtype, comm):
    # Test if global bb tree with only one node returns the correct collision
    mesh = create_unit_cube(comm, 4, 5, 3)

    # First point should not be in any tree
    # Second point should always be in the global tree, but only in
    # entity tree with a serial mesh
    x = np.array([[2.0, 2.0, 3.0], [0.3, 0.2, 0.1]], dtype=dtype)

    tree = bb_tree(mesh, mesh.topology.dim, padding=0.0)
    global_tree = tree.create_global_tree(mesh.comm)

    tree_col = compute_collisions_points(tree, x)
    global_tree_col = compute_collisions_points(global_tree, x)
    assert len(tree_col.links(0)) == 0 and len(global_tree_col.links(0)) == 0
    assert len(global_tree_col.links(1)) > 0
    # Only guaranteed local tree collision if mesh is on one process
    if comm.size == 1:
        assert len(tree_col.links(1)) > 0


@pytest.mark.parametrize("ct", [CellType.hexahedron, CellType.tetrahedron])
@pytest.mark.parametrize("N", [7, 13])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_sub_bbtree_box(ct, N, dtype):
    """Test that the bounding box of the stem of the bounding box tree is what we expect"""
    mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, cell_type=ct, dtype=dtype)
    tdim = mesh.topology.dim
    fdim = tdim - 1

    facets = locate_entities_boundary(mesh, fdim, lambda x: np.isclose(x[1], 1.0))
    f_to_c = mesh.topology.connectivity(fdim, tdim)
    cells = np.int32(np.unique([f_to_c.links(f)[0] for f in facets]))
    bbtree = bb_tree(mesh, tdim, padding=0.0, entities=cells)
    num_boxes = bbtree.num_bboxes
    if num_boxes > 0:
        bbox = bbtree.get_bbox(num_boxes - 1)
        assert np.isclose(bbox[0][1], (N - 1) / N)
    tree = bb_tree(mesh, tdim, padding=0.0)
    assert num_boxes < tree.num_bboxes


@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_surface_bbtree_collision(dtype):
    """Compute collision between two meshes, where only one cell of each mesh are colliding"""
    tdim = 3
    mesh1 = create_unit_cube(MPI.COMM_WORLD, 3, 3, 3, CellType.hexahedron, dtype=dtype)
    mesh2 = create_unit_cube(MPI.COMM_WORLD, 3, 3, 3, CellType.hexahedron, dtype=dtype)
    mesh2.geometry.x[:, :] += np.array([0.9, 0.9, 0.9])

    mesh1.topology.create_connectivity(mesh1.topology.dim - 1, mesh1.topology.dim)
    sf = exterior_facet_indices(mesh1.topology)
    f_to_c = mesh1.topology.connectivity(tdim - 1, tdim)

    # Compute unique set of cells (some will be counted multiple times)
    cells = np.array(list(set([f_to_c.links(f)[0] for f in sf])), dtype=np.int32)
    bbtree1 = bb_tree(mesh1, tdim, padding=0.0, entities=cells)

    mesh2.topology.create_connectivity(mesh2.topology.dim - 1, mesh2.topology.dim)
    sf = exterior_facet_indices(mesh2.topology)
    f_to_c = mesh2.topology.connectivity(tdim - 1, tdim)
    cells = np.array(list(set([f_to_c.links(f)[0] for f in sf])), dtype=np.int32)
    bbtree2 = bb_tree(mesh2, tdim, padding=0.0, entities=cells)

    collisions = compute_collisions_trees(bbtree1, bbtree2)
    assert len(collisions) == 1


@pytest.mark.parametrize("ct", [CellType.tetrahedron])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_shift_bbtree(ct, dtype):
    tdim = 3
    mesh = create_unit_cube(MPI.COMM_WORLD, 3, 3, 3, ct, dtype=dtype)
    bbtree = bb_tree(mesh, tdim, padding=0.0)
    rng = np.random.default_rng(0)
    points = rng.random((10, 3))

    # Point-tree collisions pre-motion
    collisions_pre = compute_collisions_points(bbtree, points)
    # Shift everything
    shift = np.array([1.0, 2.0, 3.0], dtype=dtype)
    points[:] += shift
    bbtree.bbox_coordinates[:] += shift

    collisions_post = compute_collisions_points(bbtree, points)
    assert (collisions_pre.array == collisions_post.array).all()


@pytest.mark.parametrize("dim", [2, 3])
@pytest.mark.parametrize("affine", [True, False])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_determine_point_ownership(dim, affine, dtype):
    """Find point owners (ranks and cells) using bounding box trees + global communication
    and compare to point ownership data results."""
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    mpi_dtype = MPI.DOUBLE if dtype == np.float64 else MPI.FLOAT

    tdim = dim
    num_cells_side = 4
    if tdim == 2:
        ct = CellType.triangle if affine else CellType.quadrilateral
        mesh = create_unit_square(MPI.COMM_WORLD, num_cells_side, num_cells_side, ct, dtype=dtype)
    else:
        ct = CellType.tetrahedron if affine else CellType.hexahedron
        mesh = create_unit_cube(
            MPI.COMM_WORLD,
            num_cells_side,
            num_cells_side,
            num_cells_side,
            ct,
            dtype=dtype,
        )
    cell_map = mesh.topology.index_map(tdim)
    cells_local = np.arange(cell_map.size_local, dtype=np.int32)
    num_cells_global = mesh.topology.index_map(tdim).size_global

    # Check point ownership for midpoints of each owned cell
    # (should be owned by the calling process)
    local_midpoints = compute_midpoints(mesh, tdim, cells_local)
    po = determine_point_ownership(mesh, local_midpoints, 0.0, cells_local)
    assert len(po.dest_cells) == local_midpoints.shape[0]
    np.testing.assert_allclose(po.dest_owner, rank)
    np.testing.assert_allclose(po.dest_cells, cells_local)
    np.testing.assert_allclose(po.dest_points, local_midpoints)
    np.testing.assert_allclose(po.src_owner, rank)

    # Gather all midpoints to all processes and check that calling determine_point_ownership
    # assignes data to the original rank.
    midpoints_per_rank = np.zeros(comm.size, dtype=np.int32)
    midpoints_offsets = np.zeros(comm.size, dtype=np.int32)
    comm.Allgather(np.array([local_midpoints.shape[0]], dtype=np.int32), midpoints_per_rank)
    midpoints_offsets[1:] = np.cumsum(midpoints_per_rank[:-1])
    all_midpoints = np.zeros((num_cells_global, 3), dtype=dtype)
    comm.Allgatherv(
        local_midpoints, [all_midpoints, midpoints_per_rank * 3, midpoints_offsets * 3, mpi_dtype]
    )

    # Gather ownership ranges of process sent to all processes
    ownership_ranges = np.empty(MPI.COMM_WORLD.size + 1, dtype=np.int32)
    ownership_ranges[0] = 0
    ownership_ranges[1:] = comm.allgather(cell_map.local_range[1])

    # Check that point ownership matches the original rank
    global_po = determine_point_ownership(mesh, all_midpoints, 0.0, cells_local)
    assigned_ranks = np.empty(num_cells_global, dtype=np.int32)
    for i in range(comm.size):
        assigned_ranks[ownership_ranges[i] : ownership_ranges[i + 1]] = i
    np.testing.assert_allclose(global_po.src_owner, assigned_ranks)
    # Check that each process is assigned as many points as it has cells
    # (from each other process)
    assert len(global_po.dest_cells) == comm.size * (cell_map.size_local)

    for cell, point in zip(global_po.dest_cells, global_po.dest_points):
        np.testing.assert_allclose(local_midpoints[cell], point)

    # Check ownership for subset of cells
    left_cells = locate_entities(mesh, tdim, lambda x: x[0] <= 0.5 + 1e-14)
    left_cells = left_cells[left_cells < cell_map.size_local]

    subset_po = determine_point_ownership(mesh, local_midpoints, 0.0, left_cells)
    right_cells = np.delete(cells_local, left_cells)
    np.testing.assert_allclose(subset_po.src_owner[right_cells], -1)
    assert len(subset_po.dest_cells) == len(left_cells)