File: demo_cahn-hilliard.py

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 170; xml: 55
file content (356 lines) | stat: -rw-r--r-- 11,424 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.15.1
# ---

# # Cahn-Hilliard equation
#
# This example demonstrates the solution of the Cahn-Hilliard equation,
# a nonlinear, time-dependent fourth-order PDE.
#
# - A mixed finite element method
# - The $\theta$-method for time-dependent equations
# - Automatic linearisation
# - Use of the class
#   {py:class}`NonlinearProblem<dolfinx.fem.petsc.NonlinearProblem>`
# - The built-in Newton solver
#   ({py:class}`NewtonSolver<dolfinx.nls.petsc.NewtonSolver>`)
# - Form compiler options
# - Interpolation of functions
# - Visualisation of a running simulation with
#   [PyVista](https://pyvista.org/)
#
# This demo is implemented in {download}`demo_cahn-hilliard.py`.
#
# ## Equation and problem definition
#
# The Cahn-Hilliard equation is a parabolic equation and is typically
# used to model phase separation in binary mixtures.  It involves
# first-order time derivatives, and second- and fourth-order spatial
# derivatives.  The equation reads:
#
# $$
# \begin{align}
# \frac{\partial c}{\partial t} -
#   \nabla \cdot M \left(\nabla\left(\frac{d f}{dc}
#   - \lambda \nabla^{2}c\right)\right) &= 0 \quad {\rm in} \ \Omega, \\
# M\left(\nabla\left(\frac{d f}{d c} -
#   \lambda \nabla^{2}c\right)\right) \cdot n
#   &= 0 \quad {\rm on} \ \partial\Omega, \\
# M \lambda \nabla c \cdot n &= 0 \quad {\rm on} \ \partial\Omega.
# \end{align}
# $$
#
# where $c$ is the unknown field, the function $f$ is usually non-convex
# in $c$ (a fourth-order polynomial is commonly used), $n$ is the
# outward directed boundary normal, and $M$ is a scalar parameter.
#
# ### Operator split form
#
# The Cahn-Hilliard equation is a fourth-order equation, so casting it
# in a weak form would result in the presence of second-order spatial
# derivatives, and the problem could not be solved using a standard
# Lagrange finite element basis.  A solution is to rephrase the problem
# as two coupled second-order equations:
#
# $$
# \begin{align}
# \frac{\partial c}{\partial t} - \nabla \cdot M \nabla\mu
#     &= 0 \quad {\rm in} \ \Omega, \\
# \mu -  \frac{d f}{d c} + \lambda \nabla^{2}c &= 0 \quad {\rm in} \ \Omega.
# \end{align}
# $$
#
# The unknown fields are now $c$ and $\mu$. The weak (variational) form
# of the problem reads: find $(c, \mu) \in V \times V$ such that
#
# $$
# \begin{align}
# \int_{\Omega} \frac{\partial c}{\partial t} q \, {\rm d} x +
#     \int_{\Omega} M \nabla\mu \cdot \nabla q \, {\rm d} x
#     &= 0 \quad \forall \ q \in V,  \\
# \int_{\Omega} \mu v \, {\rm d} x - \int_{\Omega} \frac{d f}{d c} v \, {\rm d} x
#   - \int_{\Omega} \lambda \nabla c \cdot \nabla v \, {\rm d} x
#    &= 0 \quad \forall \ v \in V.
# \end{align}
# $$
#
# ### Time discretisation
#
# Before being able to solve this problem, the time derivative must be
# dealt with. Apply the $\theta$-method to the mixed weak form of the
# equation:
#
# $$
# \begin{align}
# \int_{\Omega} \frac{c_{n+1} - c_{n}}{dt} q \, {\rm d} x
# + \int_{\Omega} M \nabla \mu_{n+\theta} \cdot \nabla q \, {\rm d} x
#        &= 0 \quad \forall \ q \in V  \\
# \int_{\Omega} \mu_{n+1} v  \, {\rm d} x - \int_{\Omega} \frac{d f_{n+1}}{d c} v  \, {\rm d} x
# - \int_{\Omega} \lambda \nabla c_{n+1} \cdot \nabla v \, {\rm d} x
#        &= 0 \quad \forall \ v \in V
# \end{align}
# $$
#
# where $dt = t_{n+1} - t_{n}$ and $\mu_{n+\theta} = (1-\theta) \mu_{n} + \theta \mu_{n+1}$.
# The task is: given $c_{n}$ and $\mu_{n}$, solve the above equation to
# find $c_{n+1}$ and $\mu_{n+1}$.
#
# ### Demo parameters
#
# The following domains, functions and time stepping parameters are used
# in this demo:
#
# - $\Omega = (0, 1) \times (0, 1)$ (unit square)
# - $f = 100 c^{2} (1-c)^{2}$
# - $\lambda = 1 \times 10^{-2}$
# - $M = 1$
# - $dt = 5 \times 10^{-6}$
# - $\theta = 0.5$
#
# ## Implementation
#
# This demo is implemented in the {download}`demo_cahn-hilliard.py`
# file.

# +
import os

try:
    from petsc4py import PETSc

    import dolfinx

    if not dolfinx.has_petsc:
        print("This demo requires DOLFINx to be compiled with PETSc enabled.")
        exit(0)
except ModuleNotFoundError:
    print("This demo requires petsc4py.")
    exit(0)

from mpi4py import MPI

import numpy as np

import ufl
from basix.ufl import element, mixed_element
from dolfinx import default_real_type, log, plot
from dolfinx.fem import Function, functionspace
from dolfinx.fem.petsc import NonlinearProblem
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType, create_unit_square
from dolfinx.nls.petsc import NewtonSolver
from ufl import dx, grad, inner

try:
    import pyvista as pv
    import pyvistaqt as pvqt

    have_pyvista = True
    if pv.OFF_SCREEN:
        pv.start_xvfb(wait=0.5)
except ModuleNotFoundError:
    print("pyvista and pyvistaqt are required to visualise the solution")
    have_pyvista = False

# Save all logging to file
log.set_output_file("log.txt")
# -

# Next, various model parameters are defined:

lmbda = 1.0e-02  # surface parameter
dt = 5.0e-06  # time step
theta = 0.5  # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicholson

# A unit square mesh with 96 cells edges in each direction is created,
# and on this mesh a
# {py:class}`FunctionSpace <dolfinx.fem.FunctionSpace>` `ME` is built
# using a pair of linear Lagrange elements.

msh = create_unit_square(MPI.COMM_WORLD, 96, 96, CellType.triangle)
P1 = element("Lagrange", msh.basix_cell(), 1, dtype=default_real_type)
ME = functionspace(msh, mixed_element([P1, P1]))

# Trial and test functions of the space `ME` are now defined:

q, v = ufl.TestFunctions(ME)

# ```{index} split functions
# ```
#
# For the test functions, {py:func}`TestFunctions<function
# ufl.argument.TestFunctions>` (note the 's' at the end) is used to
# define the scalar test functions `q` and `v`. Some mixed objects of
# the {py:class}`Function<dolfinx.fem.function.Function>` class on `ME`
# are defined to represent $u = (c_{n+1}, \mu_{n+1})$ and $u0 = (c_{n},
# \mu_{n})$, and these are then split into sub-functions:

# +
u = Function(ME)  # current solution
u0 = Function(ME)  # solution from previous converged step

# Split mixed functions
c, mu = ufl.split(u)
c0, mu0 = ufl.split(u0)
# -

# The line `c, mu = ufl.split(u)` permits direct access to the
# components of a mixed function. Note that `c` and `mu` are references
# for components of `u`, and not copies.
#
# ```{index} single: interpolating functions; (in Cahn-Hilliard demo)
# ```
#
# The initial conditions are interpolated into a finite element space:

# +
# Zero u
u.x.array[:] = 0.0

# Interpolate initial condition
rng = np.random.default_rng(42)
u.sub(0).interpolate(lambda x: 0.63 + 0.02 * (0.5 - rng.random(x.shape[1])))
u.x.scatter_forward()
# -

# The first line creates an object of type `InitialConditions`.  The
# following two lines make `u` and `u0` interpolants of `u_init` (since
# `u` and `u0` are finite element functions, they may not be able to
# represent a given function exactly, but the function can be
# approximated by interpolating it in a finite element space).
#
# ```{index} automatic differentiation
# ```
#
# The chemical potential $df/dc$ is computed using UFL automatic
# differentiation:

# Compute the chemical potential df/dc
c = ufl.variable(c)
f = 100 * c**2 * (1 - c) ** 2
dfdc = ufl.diff(f, c)

# The first line declares that `c` is a variable that some function can
# be differentiated with respect to. The next line is the function $f$
# defined in the problem statement, and the third line performs the
# differentiation of `f` with respect to the variable `c`.
#
# It is convenient to introduce an expression for $\mu_{n+\theta}$:

# mu_(n+theta)
mu_mid = (1.0 - theta) * mu0 + theta * mu

# which is then used in the definition of the variational forms:

# Weak statement of the equations
F0 = inner(c, q) * dx - inner(c0, q) * dx + dt * inner(grad(mu_mid), grad(q)) * dx
F1 = inner(mu, v) * dx - inner(dfdc, v) * dx - lmbda * inner(grad(c), grad(v)) * dx
F = F0 + F1

# This is a statement of the time-discrete equations presented as part
# of the problem statement, using UFL syntax.
#
# ```{index} single: Newton solver; (in Cahn-Hilliard demo)
# ```
#
# The DOLFINx Newton solver requires a
# {py:class}`NonlinearProblem<dolfinx.fem.NonlinearProblem>` object to
# solve a system of nonlinear equations

# +
# Create nonlinear problem and Newton solver
problem = NonlinearProblem(F, u)
solver = NewtonSolver(MPI.COMM_WORLD, problem)
solver.convergence_criterion = "incremental"
solver.rtol = np.sqrt(np.finfo(default_real_type).eps) * 1e-2

# We can customize the linear solver used inside the NewtonSolver by
# modifying the PETSc options
ksp = solver.krylov_solver
opts = PETSc.Options()  # type: ignore
option_prefix = ksp.getOptionsPrefix()
opts[f"{option_prefix}ksp_type"] = "preonly"
opts[f"{option_prefix}pc_type"] = "lu"
sys = PETSc.Sys()  # type: ignore
# For factorisation prefer superlu_dist, then MUMPS, then default
if sys.hasExternalPackage("superlu_dist"):
    opts[f"{option_prefix}pc_factor_mat_solver_type"] = "superlu_dist"
elif sys.hasExternalPackage("mumps"):
    opts[f"{option_prefix}pc_factor_mat_solver_type"] = "mumps"
ksp.setFromOptions()
# -

# The setting of `convergence_criterion` to `"incremental"` specifies
# that the Newton solver should compute a norm of the solution increment
# to check for convergence (the other possibility is to use
# `"residual"`, or to provide a user-defined check). The tolerance for
# convergence is specified by `rtol`.
#
# To run the solver and save the output to a VTK file for later
# visualization, the solver is advanced in time from $t_{n}$ to
# $t_{n+1}$ until a terminal time $T$ is reached:

# +
# Output file
file = XDMFFile(MPI.COMM_WORLD, "demo_ch/output.xdmf", "w")
file.write_mesh(msh)

# Step in time
t = 0.0

#  Reduce run time if on test (CI) server
if "CI" in os.environ.keys() or "GITHUB_ACTIONS" in os.environ.keys():
    T = 3 * dt
else:
    T = 50 * dt

# Get the sub-space for c and the corresponding dofs in the mixed space
# vector
V0, dofs = ME.sub(0).collapse()

# Prepare viewer for plotting the solution during the computation
if have_pyvista:
    # Create a VTK 'mesh' with 'nodes' at the function dofs
    topology, cell_types, x = plot.vtk_mesh(V0)
    grid = pv.UnstructuredGrid(topology, cell_types, x)

    # Set output data
    grid.point_data["c"] = u.x.array[dofs].real
    grid.set_active_scalars("c")

    p = pvqt.BackgroundPlotter(title="concentration", auto_update=True)
    p.add_mesh(grid, clim=[0, 1])
    p.view_xy(True)
    p.add_text(f"time: {t}", font_size=12, name="timelabel")

c = u.sub(0)
u0.x.array[:] = u.x.array
while t < T:
    t += dt
    r = solver.solve(u)
    print(f"Step {int(t / dt)}: num iterations: {r[0]}")
    u0.x.array[:] = u.x.array
    file.write_function(c, t)

    # Update the plot window
    if have_pyvista:
        p.add_text(f"time: {t:.2e}", font_size=12, name="timelabel")
        grid.point_data["c"] = u.x.array[dofs].real
        p.app.processEvents()

file.close()

# Update ghost entries and plot
if have_pyvista:
    u.x.scatter_forward()
    grid.point_data["c"] = u.x.array[dofs].real
    screenshot = None
    if pv.OFF_SCREEN:
        screenshot = "c.png"
    pv.plot(grid, show_edges=True, screenshot=screenshot)