1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.15.1
# ---
# # Cahn-Hilliard equation
#
# This example demonstrates the solution of the Cahn-Hilliard equation,
# a nonlinear, time-dependent fourth-order PDE.
#
# - A mixed finite element method
# - The $\theta$-method for time-dependent equations
# - Automatic linearisation
# - Use of the class
# {py:class}`NonlinearProblem<dolfinx.fem.petsc.NonlinearProblem>`
# - The built-in Newton solver
# ({py:class}`NewtonSolver<dolfinx.nls.petsc.NewtonSolver>`)
# - Form compiler options
# - Interpolation of functions
# - Visualisation of a running simulation with
# [PyVista](https://pyvista.org/)
#
# This demo is implemented in {download}`demo_cahn-hilliard.py`.
#
# ## Equation and problem definition
#
# The Cahn-Hilliard equation is a parabolic equation and is typically
# used to model phase separation in binary mixtures. It involves
# first-order time derivatives, and second- and fourth-order spatial
# derivatives. The equation reads:
#
# $$
# \begin{align}
# \frac{\partial c}{\partial t} -
# \nabla \cdot M \left(\nabla\left(\frac{d f}{dc}
# - \lambda \nabla^{2}c\right)\right) &= 0 \quad {\rm in} \ \Omega, \\
# M\left(\nabla\left(\frac{d f}{d c} -
# \lambda \nabla^{2}c\right)\right) \cdot n
# &= 0 \quad {\rm on} \ \partial\Omega, \\
# M \lambda \nabla c \cdot n &= 0 \quad {\rm on} \ \partial\Omega.
# \end{align}
# $$
#
# where $c$ is the unknown field, the function $f$ is usually non-convex
# in $c$ (a fourth-order polynomial is commonly used), $n$ is the
# outward directed boundary normal, and $M$ is a scalar parameter.
#
# ### Operator split form
#
# The Cahn-Hilliard equation is a fourth-order equation, so casting it
# in a weak form would result in the presence of second-order spatial
# derivatives, and the problem could not be solved using a standard
# Lagrange finite element basis. A solution is to rephrase the problem
# as two coupled second-order equations:
#
# $$
# \begin{align}
# \frac{\partial c}{\partial t} - \nabla \cdot M \nabla\mu
# &= 0 \quad {\rm in} \ \Omega, \\
# \mu - \frac{d f}{d c} + \lambda \nabla^{2}c &= 0 \quad {\rm in} \ \Omega.
# \end{align}
# $$
#
# The unknown fields are now $c$ and $\mu$. The weak (variational) form
# of the problem reads: find $(c, \mu) \in V \times V$ such that
#
# $$
# \begin{align}
# \int_{\Omega} \frac{\partial c}{\partial t} q \, {\rm d} x +
# \int_{\Omega} M \nabla\mu \cdot \nabla q \, {\rm d} x
# &= 0 \quad \forall \ q \in V, \\
# \int_{\Omega} \mu v \, {\rm d} x - \int_{\Omega} \frac{d f}{d c} v \, {\rm d} x
# - \int_{\Omega} \lambda \nabla c \cdot \nabla v \, {\rm d} x
# &= 0 \quad \forall \ v \in V.
# \end{align}
# $$
#
# ### Time discretisation
#
# Before being able to solve this problem, the time derivative must be
# dealt with. Apply the $\theta$-method to the mixed weak form of the
# equation:
#
# $$
# \begin{align}
# \int_{\Omega} \frac{c_{n+1} - c_{n}}{dt} q \, {\rm d} x
# + \int_{\Omega} M \nabla \mu_{n+\theta} \cdot \nabla q \, {\rm d} x
# &= 0 \quad \forall \ q \in V \\
# \int_{\Omega} \mu_{n+1} v \, {\rm d} x - \int_{\Omega} \frac{d f_{n+1}}{d c} v \, {\rm d} x
# - \int_{\Omega} \lambda \nabla c_{n+1} \cdot \nabla v \, {\rm d} x
# &= 0 \quad \forall \ v \in V
# \end{align}
# $$
#
# where $dt = t_{n+1} - t_{n}$ and $\mu_{n+\theta} = (1-\theta) \mu_{n} + \theta \mu_{n+1}$.
# The task is: given $c_{n}$ and $\mu_{n}$, solve the above equation to
# find $c_{n+1}$ and $\mu_{n+1}$.
#
# ### Demo parameters
#
# The following domains, functions and time stepping parameters are used
# in this demo:
#
# - $\Omega = (0, 1) \times (0, 1)$ (unit square)
# - $f = 100 c^{2} (1-c)^{2}$
# - $\lambda = 1 \times 10^{-2}$
# - $M = 1$
# - $dt = 5 \times 10^{-6}$
# - $\theta = 0.5$
#
# ## Implementation
#
# This demo is implemented in the {download}`demo_cahn-hilliard.py`
# file.
# +
import os
try:
from petsc4py import PETSc
import dolfinx
if not dolfinx.has_petsc:
print("This demo requires DOLFINx to be compiled with PETSc enabled.")
exit(0)
except ModuleNotFoundError:
print("This demo requires petsc4py.")
exit(0)
from mpi4py import MPI
import numpy as np
import ufl
from basix.ufl import element, mixed_element
from dolfinx import default_real_type, log, plot
from dolfinx.fem import Function, functionspace
from dolfinx.fem.petsc import NonlinearProblem
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType, create_unit_square
from dolfinx.nls.petsc import NewtonSolver
from ufl import dx, grad, inner
try:
import pyvista as pv
import pyvistaqt as pvqt
have_pyvista = True
if pv.OFF_SCREEN:
pv.start_xvfb(wait=0.5)
except ModuleNotFoundError:
print("pyvista and pyvistaqt are required to visualise the solution")
have_pyvista = False
# Save all logging to file
log.set_output_file("log.txt")
# -
# Next, various model parameters are defined:
lmbda = 1.0e-02 # surface parameter
dt = 5.0e-06 # time step
theta = 0.5 # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicholson
# A unit square mesh with 96 cells edges in each direction is created,
# and on this mesh a
# {py:class}`FunctionSpace <dolfinx.fem.FunctionSpace>` `ME` is built
# using a pair of linear Lagrange elements.
msh = create_unit_square(MPI.COMM_WORLD, 96, 96, CellType.triangle)
P1 = element("Lagrange", msh.basix_cell(), 1, dtype=default_real_type)
ME = functionspace(msh, mixed_element([P1, P1]))
# Trial and test functions of the space `ME` are now defined:
q, v = ufl.TestFunctions(ME)
# ```{index} split functions
# ```
#
# For the test functions, {py:func}`TestFunctions<function
# ufl.argument.TestFunctions>` (note the 's' at the end) is used to
# define the scalar test functions `q` and `v`. Some mixed objects of
# the {py:class}`Function<dolfinx.fem.function.Function>` class on `ME`
# are defined to represent $u = (c_{n+1}, \mu_{n+1})$ and $u0 = (c_{n},
# \mu_{n})$, and these are then split into sub-functions:
# +
u = Function(ME) # current solution
u0 = Function(ME) # solution from previous converged step
# Split mixed functions
c, mu = ufl.split(u)
c0, mu0 = ufl.split(u0)
# -
# The line `c, mu = ufl.split(u)` permits direct access to the
# components of a mixed function. Note that `c` and `mu` are references
# for components of `u`, and not copies.
#
# ```{index} single: interpolating functions; (in Cahn-Hilliard demo)
# ```
#
# The initial conditions are interpolated into a finite element space:
# +
# Zero u
u.x.array[:] = 0.0
# Interpolate initial condition
rng = np.random.default_rng(42)
u.sub(0).interpolate(lambda x: 0.63 + 0.02 * (0.5 - rng.random(x.shape[1])))
u.x.scatter_forward()
# -
# The first line creates an object of type `InitialConditions`. The
# following two lines make `u` and `u0` interpolants of `u_init` (since
# `u` and `u0` are finite element functions, they may not be able to
# represent a given function exactly, but the function can be
# approximated by interpolating it in a finite element space).
#
# ```{index} automatic differentiation
# ```
#
# The chemical potential $df/dc$ is computed using UFL automatic
# differentiation:
# Compute the chemical potential df/dc
c = ufl.variable(c)
f = 100 * c**2 * (1 - c) ** 2
dfdc = ufl.diff(f, c)
# The first line declares that `c` is a variable that some function can
# be differentiated with respect to. The next line is the function $f$
# defined in the problem statement, and the third line performs the
# differentiation of `f` with respect to the variable `c`.
#
# It is convenient to introduce an expression for $\mu_{n+\theta}$:
# mu_(n+theta)
mu_mid = (1.0 - theta) * mu0 + theta * mu
# which is then used in the definition of the variational forms:
# Weak statement of the equations
F0 = inner(c, q) * dx - inner(c0, q) * dx + dt * inner(grad(mu_mid), grad(q)) * dx
F1 = inner(mu, v) * dx - inner(dfdc, v) * dx - lmbda * inner(grad(c), grad(v)) * dx
F = F0 + F1
# This is a statement of the time-discrete equations presented as part
# of the problem statement, using UFL syntax.
#
# ```{index} single: Newton solver; (in Cahn-Hilliard demo)
# ```
#
# The DOLFINx Newton solver requires a
# {py:class}`NonlinearProblem<dolfinx.fem.NonlinearProblem>` object to
# solve a system of nonlinear equations
# +
# Create nonlinear problem and Newton solver
problem = NonlinearProblem(F, u)
solver = NewtonSolver(MPI.COMM_WORLD, problem)
solver.convergence_criterion = "incremental"
solver.rtol = np.sqrt(np.finfo(default_real_type).eps) * 1e-2
# We can customize the linear solver used inside the NewtonSolver by
# modifying the PETSc options
ksp = solver.krylov_solver
opts = PETSc.Options() # type: ignore
option_prefix = ksp.getOptionsPrefix()
opts[f"{option_prefix}ksp_type"] = "preonly"
opts[f"{option_prefix}pc_type"] = "lu"
sys = PETSc.Sys() # type: ignore
# For factorisation prefer superlu_dist, then MUMPS, then default
if sys.hasExternalPackage("superlu_dist"):
opts[f"{option_prefix}pc_factor_mat_solver_type"] = "superlu_dist"
elif sys.hasExternalPackage("mumps"):
opts[f"{option_prefix}pc_factor_mat_solver_type"] = "mumps"
ksp.setFromOptions()
# -
# The setting of `convergence_criterion` to `"incremental"` specifies
# that the Newton solver should compute a norm of the solution increment
# to check for convergence (the other possibility is to use
# `"residual"`, or to provide a user-defined check). The tolerance for
# convergence is specified by `rtol`.
#
# To run the solver and save the output to a VTK file for later
# visualization, the solver is advanced in time from $t_{n}$ to
# $t_{n+1}$ until a terminal time $T$ is reached:
# +
# Output file
file = XDMFFile(MPI.COMM_WORLD, "demo_ch/output.xdmf", "w")
file.write_mesh(msh)
# Step in time
t = 0.0
# Reduce run time if on test (CI) server
if "CI" in os.environ.keys() or "GITHUB_ACTIONS" in os.environ.keys():
T = 3 * dt
else:
T = 50 * dt
# Get the sub-space for c and the corresponding dofs in the mixed space
# vector
V0, dofs = ME.sub(0).collapse()
# Prepare viewer for plotting the solution during the computation
if have_pyvista:
# Create a VTK 'mesh' with 'nodes' at the function dofs
topology, cell_types, x = plot.vtk_mesh(V0)
grid = pv.UnstructuredGrid(topology, cell_types, x)
# Set output data
grid.point_data["c"] = u.x.array[dofs].real
grid.set_active_scalars("c")
p = pvqt.BackgroundPlotter(title="concentration", auto_update=True)
p.add_mesh(grid, clim=[0, 1])
p.view_xy(True)
p.add_text(f"time: {t}", font_size=12, name="timelabel")
c = u.sub(0)
u0.x.array[:] = u.x.array
while t < T:
t += dt
r = solver.solve(u)
print(f"Step {int(t / dt)}: num iterations: {r[0]}")
u0.x.array[:] = u.x.array
file.write_function(c, t)
# Update the plot window
if have_pyvista:
p.add_text(f"time: {t:.2e}", font_size=12, name="timelabel")
grid.point_data["c"] = u.x.array[dofs].real
p.app.processEvents()
file.close()
# Update ghost entries and plot
if have_pyvista:
u.x.scatter_forward()
grid.point_data["c"] = u.x.array[dofs].real
screenshot = None
if pv.OFF_SCREEN:
screenshot = "c.png"
pv.plot(grid, show_edges=True, screenshot=screenshot)
|