1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.13.6
# ---
# # Mesh generation with Gmsh
#
# Copyright (C) 2020-2023 Garth N. Wells and Jørgen S. Dokken
#
# This demo shows how to create meshes using the Gmsh Python interface.
# It is implemented in {download}`demo_gmsh.py`.
#
# The Gmsh module is required for this demo.
from mpi4py import MPI
# +
from dolfinx.io import XDMFFile, gmshio
try:
import gmsh # type: ignore
except ImportError:
print("This demo requires gmsh to be installed")
exit(0)
# -
# ## Gmsh model builders
#
# The following functions add Gmsh meshes to a 'model'.
# +
def gmsh_sphere(model: gmsh.model, name: str) -> gmsh.model:
"""Create a Gmsh model of a sphere.
Args:
model: Gmsh model to add the mesh to.
name: Name (identifier) of the mesh to add.
Returns:
Gmsh model with a sphere mesh added.
"""
model.add(name)
model.setCurrent(name)
sphere = model.occ.addSphere(0, 0, 0, 1, tag=1)
# Synchronize OpenCascade representation with gmsh model
model.occ.synchronize()
# Add physical marker for cells. It is important to call this
# function after OpenCascade synchronization
model.add_physical_group(dim=3, tags=[sphere])
# Generate the mesh
model.mesh.generate(dim=3)
return model
def gmsh_sphere_minus_box(model: gmsh.model, name: str) -> gmsh.model:
"""Create a Gmsh model of a sphere with a box from the sphere removed.
Args:
model: Gmsh model to add the mesh to.
name: Name (identifier) of the mesh to add.
Returns:
Gmsh model with a sphere mesh added.
"""
model.add(name)
model.setCurrent(name)
sphere_dim_tags = model.occ.addSphere(0, 0, 0, 1)
box_dim_tags = model.occ.addBox(0, 0, 0, 1, 1, 1)
model_dim_tags = model.occ.cut([(3, sphere_dim_tags)], [(3, box_dim_tags)])
model.occ.synchronize()
# Add physical tag 1 for exterior surfaces
boundary = model.getBoundary(model_dim_tags[0], oriented=False)
boundary_ids = [b[1] for b in boundary]
model.addPhysicalGroup(2, boundary_ids, tag=1)
model.setPhysicalName(2, 1, "Sphere surface")
# Add physical tag 2 for the volume
volume_entities = [model[1] for model in model.getEntities(3)]
model.addPhysicalGroup(3, volume_entities, tag=2)
model.setPhysicalName(3, 2, "Sphere volume")
model.mesh.generate(dim=3)
return model
def gmsh_ring(model: gmsh.model, name: str) -> gmsh.model:
"""Create a Gmsh model of a ring-type geometry using hexahedral cells.
Args:
model: Gmsh model to add the mesh to.
name: Name (identifier) of the mesh to add.
Returns:
Gmsh model with a sphere mesh added.
"""
model.add(name)
model.setCurrent(name)
# Recombine tetrahedra to hexahedra
gmsh.option.setNumber("Mesh.RecombinationAlgorithm", 2)
gmsh.option.setNumber("Mesh.RecombineAll", 2)
gmsh.option.setNumber("Mesh.CharacteristicLengthFactor", 1)
circle = model.occ.addDisk(0, 0, 0, 1, 1)
circle_inner = model.occ.addDisk(0, 0, 0, 0.5, 0.5)
cut = model.occ.cut([(2, circle)], [(2, circle_inner)])[0]
extruded_geometry = model.occ.extrude(cut, 0, 0, 0.5, numElements=[5], recombine=True)
model.occ.synchronize()
model.addPhysicalGroup(2, [cut[0][1]], tag=1)
model.setPhysicalName(2, 1, "2D cylinder")
boundary_entities = model.getEntities(2)
other_boundary_entities = []
for entity in boundary_entities:
if entity != cut[0][1]:
other_boundary_entities.append(entity[1])
model.addPhysicalGroup(2, other_boundary_entities, tag=3)
model.setPhysicalName(2, 3, "Remaining boundaries")
model.mesh.generate(3)
model.mesh.setOrder(2)
volume_entities = []
for entity in extruded_geometry:
if entity[0] == 3:
volume_entities.append(entity[1])
model.addPhysicalGroup(3, volume_entities, tag=1)
model.setPhysicalName(3, 1, "Mesh volume")
return model
# -
# ## DOLFINx mesh creation and file output
#
# The following function creates a DOLFINx mesh from a Gmsh model, and
# cell and facets tags. The mesh and the tags are written to an XDMF file
# for visualisation, e.g. using ParaView.
# +
def create_mesh(comm: MPI.Comm, model: gmsh.model, name: str, filename: str, mode: str):
"""Create a DOLFINx from a Gmsh model and output to file.
Args:
comm: MPI communicator top create the mesh on.
model: Gmsh model.
name: Name (identifier) of the mesh to add.
filename: XDMF filename.
mode: XDMF file mode. "w" (write) or "a" (append).
"""
msh, ct, ft = gmshio.model_to_mesh(model, comm, rank=0)
msh.name = name
ct.name = f"{msh.name}_cells"
ft.name = f"{msh.name}_facets"
with XDMFFile(msh.comm, filename, mode) as file:
msh.topology.create_connectivity(2, 3)
file.write_mesh(msh)
file.write_meshtags(
ct, msh.geometry, geometry_xpath=f"/Xdmf/Domain/Grid[@Name='{msh.name}']/Geometry"
)
file.write_meshtags(
ft, msh.geometry, geometry_xpath=f"/Xdmf/Domain/Grid[@Name='{msh.name}']/Geometry"
)
# -
# ## Generate meshes
# Create a Gmsh model and set the verbosity level.
# +
gmsh.initialize()
gmsh.option.setNumber("General.Terminal", 0)
# Create model
model = gmsh.model()
# -
# First, we create a Gmsh model of a sphere using tetrahedral cells
# (linear geometry), then create independent meshes on each MPI rank and
# write each mesh to an XDMF file. The MPI rank is appended to the
# filename since the meshes are not distributed.
# +
model = gmsh_sphere(model, "Sphere")
model.setCurrent("Sphere")
create_mesh(MPI.COMM_SELF, model, "sphere", f"out_gmsh/mesh_rank_{MPI.COMM_WORLD.rank}.xdmf", "w")
# -
# Next, we create a Gmsh model of a sphere with a box removed and using
# tetrahedral cells (linear geometry), then create a distributed mesh.
# The distributed mesh is written to file. The write option ``"w"`` is
# passed to create a new XDMF file.
# +
model = gmsh_sphere_minus_box(model, "Sphere minus box")
model.setCurrent("Sphere minus box")
create_mesh(MPI.COMM_WORLD, model, "ball_d1", "out_gmsh/mesh.xdmf", "w")
# -
# For the mesh of the sphere with a box remove, we can increase the
# degree of the geometry representation to 2 (quadratic geometry
# representation). The higher-order distributed mesh is appended to the
# XDMF file.
# +
model.mesh.generate(3)
gmsh.option.setNumber("General.Terminal", 1)
model.mesh.setOrder(2)
gmsh.option.setNumber("General.Terminal", 0)
create_mesh(MPI.COMM_WORLD, model, "ball_d2", "out_gmsh/mesh.xdmf", "a")
# -
# Finally, we create a distributed mesh using hexahedral cells of
# geometric degree 2, and append the mesh to the XDMF file.
# +
model = gmsh_ring(model, "Hexahedral mesh")
model.setCurrent("Hexahedral mesh")
create_mesh(MPI.COMM_WORLD, model, "hex_d2", "out_gmsh/mesh.xdmf", "a")
# -
# The generated meshes can be visualised using
# [ParaView](https://www.paraview.org/).
|