File: demo_half_loaded_waveguide.py

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 170; xml: 55
file content (532 lines) | stat: -rw-r--r-- 17,427 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# ---
# jupyter:
#   jupytext:
#     formats: ipynb,py:light
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.13.8
#   kernelspec:
#     display_name: Python 3 (ipykernel)
#     language: python
#     name: python3
# ---

# # Electromagnetic modal analysis for a waveguide

# Copyright (C) 2022 Michele Castriotta, Igor Baratta, Jørgen S. Dokken
#
# This demo is implemented in two files, one for defining and solving
# the eigenvalue problem for a half-loaded electromagnetic waveguide
# with perfect electric conducting walls, and one for verifying if the
# numerical eigenvalues are consistent with the analytical modes of the
# problem.
#
# The demo shows how to:
#
# - Setup an eigenvalue problem for Maxwell's equations
# - Use SLEPc for solving eigenvalue problems
#

# ## Equations and problem definition
#
# In this demo, we are going to show how to solve the eigenvalue problem
# associated with a half-loaded rectangular waveguide with perfect
# electric conducting walls.
#
# First of all, let's import the modules we need for solving the
# problem:

# +
from mpi4py import MPI

import numpy as np

try:
    from petsc4py import PETSc

    import dolfinx

    if not dolfinx.has_petsc:
        print("This demo requires DOLFINx to be compiled with PETSc enabled.")
        exit(0)
    if PETSc.IntType == np.int64 and MPI.COMM_WORLD.size > 1:
        print("This solver fails with PETSc and 64-bit integers becaude of memory errors in MUMPS.")
        # Note: when PETSc.IntType == np.int32, superlu_dist is used
        # rather than MUMPS and does not trigger memory failures.
        exit(0)

    real_type = PETSc.RealType
    scalar_type = PETSc.ScalarType

except ModuleNotFoundError:
    print("This demo requires petsc4py.")
    exit(0)

import ufl
from basix.ufl import element, mixed_element
from dolfinx import fem, io, plot
from dolfinx.fem.petsc import assemble_matrix
from dolfinx.mesh import CellType, create_rectangle, exterior_facet_indices, locate_entities

try:
    import pyvista

    have_pyvista = True
except ModuleNotFoundError:
    print("pyvista and pyvistaqt are required to visualise the solution")
    have_pyvista = False

try:
    from slepc4py import SLEPc
except ModuleNotFoundError:
    print("slepc4py is required for this demo")
    exit(0)
# -

# ## Analytical solutions for the half-loaded waveguide
#
# The analytical solutions for the half-loaded waveguide with perfect
# electric conducting walls are described in Harrington's *Time-harmonic
# electromagnetic fields*. We will skip the full derivation, and we just
# mention that the problem can be decoupled into $\mathrm{TE}_x$ and
# $\mathrm{TM}_x$ modes, and the possible $k_z$ can be found by solving
# a set of transcendental equations, which is shown here below:
#
#
# $$
# \textrm{For TE}_x \textrm{ modes}:
# \begin{cases}
# &k_{x d}^{2}+\left(\frac{n \pi}{w}\right)^{2}+k_{z}^{2}=k_0^{2}
# \varepsilon_{d} \\
# &k_{x v}^{2}+\left(\frac{n \pi}{w}\right)^{2}+k_{z}^{2}=k_0^{2}
# \varepsilon_{v} \\
# & k_{x d} \cot k_{x d} d + k_{x v} \cot \left[k_{x v}(h-d)\right] = 0
# \end{cases}
# $$
#
# $$
# \textrm{For TM}_x \textrm{ modes}:
# \begin{cases}
# &k_{x d}^{2}+\left(\frac{n \pi}{w}\right)^{2}+k_{z}^{2}=
# k_0^{2} \varepsilon_{d} \\
# &k_{x v}^{2}+\left(\frac{n \pi}{w}\right)^{2}+k_{z}^{2}=
# k_0^{2} \varepsilon_{v} \\
# & \frac{k_{x d}}{\varepsilon_{d}} \tan k_{x d} d +
# \frac{k_{x v}}{\varepsilon_{v}} \tan \left[k_{x v}(h-d)\right] = 0
# \end{cases}
# $$
#
# with:
# - $\varepsilon_d\rightarrow$ dielectric permittivity
# - $\varepsilon_v\rightarrow$ vacuum permittivity
# - $w\rightarrow$ total width of the waveguide
# - $h\rightarrow$ total height of the waveguide
# - $d\rightarrow$ height of the dielectric fraction
# - $k_0\rightarrow$ vacuum wavevector
# - $k_{xd}\rightarrow$ $x$ component of the wavevector in the dielectric
# - $k_{xv}\rightarrow$ $x$ component of the wavevector in the vacuum
# - $\frac{n \pi}{w} = k_y\rightarrow$ $y$ component of the wavevector
#   for different $n$ harmonic numbers (we assume $n=1$ for the sake of
#   simplicity)
#
# Let's define the set of equations with the $\tan$ and $\cot$ function:


def TMx_condition(
    kx_d: complex, kx_v: complex, eps_d: complex, eps_v: complex, d: float, h: float
) -> float:
    return kx_d / eps_d * np.tan(kx_d * d) + kx_v / eps_v * np.tan(kx_v * (h - d))


def TEx_condition(kx_d: complex, kx_v: complex, d: float, h: float) -> float:
    return kx_d / np.tan(kx_d * d) + kx_v / np.tan(kx_v * (h - d))


# Then, we can define the `verify_mode` function, to check whether a
# certain $k_z$ satisfy the equations (below a certain threshold). In
# other words, we provide a certain $k_z$, together with the geometrical
# and optical parameters of the waveguide, and `verify_mode()` checks
# whether the last equations for the $\mathrm{TE}_x$ or $\mathrm{TM}_x$
# modes are close to $0$.


def verify_mode(
    kz: complex,
    w: float,
    h: float,
    d: float,
    lmbd0: float,
    eps_d: complex,
    eps_v: complex,
    threshold: float,
) -> np.bool_:
    k0 = 2 * np.pi / lmbd0
    ky = np.pi / w  # we assume n = 1
    kx_d_target = np.sqrt(k0**2 * eps_d - ky**2 + -(kz**2) + 0j)
    alpha = kx_d_target**2
    beta = alpha - k0**2 * (eps_d - eps_v)
    kx_v = np.sqrt(beta)
    kx_d = np.sqrt(alpha)
    f_tm = TMx_condition(kx_d, kx_v, eps_d, eps_v, d, h)
    f_te = TEx_condition(kx_d, kx_v, d, h)
    return np.isclose(f_tm, 0, atol=threshold) or np.isclose(f_te, 0, atol=threshold)


# We now define the domain. It is a rectangular domain with width $w$
# and height $h = 0.45w$, with the dielectric medium filling the
# lower-half of the domain, with a height of $d=0.5h$.

# +
w = 1
h = 0.45 * w
d = 0.5 * h
nx = 300
ny = int(0.4 * nx)

msh = create_rectangle(
    MPI.COMM_WORLD, np.array([[0, 0], [w, h]]), np.array([nx, ny]), CellType.quadrilateral
)
msh.topology.create_connectivity(msh.topology.dim - 1, msh.topology.dim)
# -

# Now we can define the dielectric permittivity $\varepsilon_r$ over the
# domain as $\varepsilon_r = \varepsilon_v = 1$ in the vacuum, and as
# $\varepsilon_r = \varepsilon_d = 2.45$ in the dielectric:

# +
eps_v = 1
eps_d = 2.45


def Omega_d(x):
    return x[1] <= d


def Omega_v(x):
    return x[1] >= d


D = fem.functionspace(msh, ("DQ", 0))
eps = fem.Function(D)

cells_v = locate_entities(msh, msh.topology.dim, Omega_v)
cells_d = locate_entities(msh, msh.topology.dim, Omega_d)

eps.x.array[cells_d] = np.full_like(cells_d, eps_d, dtype=scalar_type)
eps.x.array[cells_v] = np.full_like(cells_v, eps_v, dtype=scalar_type)
# -

# In order to find the weak form of our problem, the starting point are
# Maxwell's equation and the perfect electric conductor condition on the
# waveguide wall:
#
# $$
# \begin{align}
# &\nabla \times \frac{1}{\mu_{r}} \nabla \times \mathbf{E}-k_{o}^{2}
# \epsilon_{r} \mathbf{E}=0 \quad &\text { in } \Omega\\
# &\hat{n}\times\mathbf{E} = 0 &\text { on } \Gamma
# \end{align}
# $$
#
# with $k_0$ and $\lambda_0 = 2\pi/k_0$ being the wavevector and the
# wavelength, which we consider fixed at $\lambda = h/0.2$. If we focus
# on non-magnetic material only, we can also use $\mu_r=1$.
#
# Now we can assume a known dependance on $z$:
#
# $$
# \mathbf{E}(x, y, z)=\left[\mathbf{E}_{t}(x, y)+\hat{z} E_{z}(x, y)\right]
# e^{-jk_z z}
# $$
#
# where $\mathbf{E}_t$ is the component of the electric field transverse
# to the waveguide axis, and $E_z$ is the component  of the electric
# field parallel to the waveguide axis, and $k_z$ represents our complex
# propagation constant.
#
# In order to pose the problem as an eigenvalue problem, we need to make
# the following substitution:
#
# $$
# \begin{align}
# & \mathbf{e}_t = k_z\mathbf{E}_t\\
# & e_z = -jE_z
# \end{align}
# $$
#
# The final weak form can be written as:
#
# $$
# \begin{aligned}
# F_{k_z}(\mathbf{e})=\int_{\Omega} &\left(\nabla_{t} \times
# \mathbf{e}_{t}\right) \cdot\left(\nabla_{t} \times
# \bar{\mathbf{v}}_{t}\right) -k_{o}^{2} \epsilon_{r} \mathbf{e}_{t} \cdot
# \bar{\mathbf{v}}_{t} \\
# &+k_z^{2}\left[\left(\nabla_{t} e_{z}+\mathbf{e}_{t}\right)
# \cdot\left(\nabla_{t} \bar{v}_{z}+\bar{\mathbf{v}}_{t}\right)-k_{o}^{2}
# \epsilon_{r} e_{z} \bar{v}_{z}\right] \mathrm{d} x = 0
# \end{aligned}
# $$
#
# Or, in a more compact form, as:
#
# $$
# \left[\begin{array}{cc}
# A_{t t} & 0 \\
# 0 & 0
# \end{array}\right]\left\{\begin{array}{l}
# \mathbf{e}_{t} \\
# e_{z}
# \end{array}\right\}=-k_z^{2}\left[\begin{array}{ll}
# B_{t t} & B_{t z} \\
# B_{z t} & B_{z z}
# \end{array}\right]\left\{\begin{array}{l}
# \mathbf{e}_{t} \\
# e_{z}
# \end{array}\right\}
# $$
#
# A problem of this kind is known as a generalized eigenvalue problem,
# where our eigenvalues are all the possible $ -k_z^2$. For further
# details about this problem, check Jin's *The Finite Element Method in
# Electromagnetics, third edition*.
#
# To write the weak form, we need to specify our function space. For
# $\mathbf{e}_t$, we can use RTCE elements (the equivalent of Nedelec
# elements on quadrilateral cells), while for $e_z$ field we can use
# Lagrange elements. This hybrid formulation is implemented with
# `mixed_element`:

degree = 1
RTCE = element("RTCE", msh.basix_cell(), degree, dtype=real_type)
Q = element("Lagrange", msh.basix_cell(), degree, dtype=real_type)
V = fem.functionspace(msh, mixed_element([RTCE, Q]))

# Now we can define our weak form:

# +
lmbd0 = h / 0.2
k0 = 2 * np.pi / lmbd0

et, ez = ufl.TrialFunctions(V)
vt, vz = ufl.TestFunctions(V)

a_tt = (ufl.inner(ufl.curl(et), ufl.curl(vt)) - (k0**2) * eps * ufl.inner(et, vt)) * ufl.dx
b_tt = ufl.inner(et, vt) * ufl.dx
b_tz = ufl.inner(et, ufl.grad(vz)) * ufl.dx
b_zt = ufl.inner(ufl.grad(ez), vt) * ufl.dx
b_zz = (ufl.inner(ufl.grad(ez), ufl.grad(vz)) - (k0**2) * eps * ufl.inner(ez, vz)) * ufl.dx

a = fem.form(a_tt)
b = fem.form(b_tt + b_tz + b_zt + b_zz)
# -

# Let's add the perfect electric conductor conditions on the waveguide
# wall:

# +
bc_facets = exterior_facet_indices(msh.topology)
bc_dofs = fem.locate_dofs_topological(V, msh.topology.dim - 1, bc_facets)
u_bc = fem.Function(V)
with u_bc.x.petsc_vec.localForm() as loc:
    loc.set(0)
bc = fem.dirichletbc(u_bc, bc_dofs)
# -

# ## Solve the problem in SLEPc

# Now we can solve the problem with SLEPc. First of all, we need to
# assemble our $A$ and $B$ matrices with PETSc in this way:

A = assemble_matrix(a, bcs=[bc])
A.assemble()
B = assemble_matrix(b, bcs=[bc])
B.assemble()

# Now, we need to create the eigenvalue problem in SLEPc. Our problem is
# a linear eigenvalue problem, that in SLEPc is solved with the `EPS`
# module. We can initialize this solver in the following way:

eps = SLEPc.EPS().create(msh.comm)

# We can pass to `EPS` our matrices by using the `setOperators` routine:

eps.setOperators(A, B)

# If the matrices in the problem have known properties (e.g.
# hermiticity) we can use this information in SLEPc to accelerate the
# calculation with the `setProblemType` function. For this problem,
# there is no property that can be exploited, and therefore we define it
# as a generalized non-Hermitian eigenvalue problem with the
# `SLEPc.EPS.ProblemType.GNHEP` object:

eps.setProblemType(SLEPc.EPS.ProblemType.GNHEP)

# Next, we need to specify a tolerance for the iterative solver, so that
# it knows when to stop:

tol = 1e-9
eps.setTolerances(tol=tol)

# Now we need to set the eigensolver for our problem. SLEPc offers
# different built-in algorithms, and also wrappers to external
# libraries. Some of these can only solve Hermitian problems and/or
# problems with eigenvalues in a certain portion of the spectrum.
# However, the choice of the particular method to choose to solve a
# problem is a technical discussion that is out of the scope of this
# demo, and that is more comprehensively discussed in the [SLEPc
# documentation](https://slepc.upv.es/documentation/slepc.pdf). For our
# problem, we will use the Krylov-Schur method, which we can set by
# calling the `setType` function:

eps.setType(SLEPc.EPS.Type.KRYLOVSCHUR)

# In order to accelerate the calculation of our solutions, we can also
# use a so-called *spectral transformation*, a technique which maps the
# original eigenvalues into another position of the spectrum without
# affecting the eigenvectors. In our case, we can use the
# shift-and-invert transformation with the `SLEPc.ST.Type.SINVERT`
# object:

# +
# Get ST context from eps
st = eps.getST()

# Set shift-and-invert transformation
st.setType(SLEPc.ST.Type.SINVERT)
# -

# The spectral transformation needs a target value for the eigenvalues
# we are looking for. Since the eigenvalues for our problem can be
# complex numbers, we need to specify whether we are searching for
# specific values in the real part, in the imaginary part, or in the
# magnitude. In our case, we are interested in propagating modes, and
# therefore in real $k_z$. For this reason, we can specify with the
# `setWhichEigenpairs` function that our target value will refer to the
# real part of the eigenvalue, with the `SLEPc.EPS.Which.TARGET_REAL`
# object:

eps.setWhichEigenpairs(SLEPc.EPS.Which.TARGET_REAL)

# For specifying the target value, we can use the `setTarget` function.
# Even though we cannot know a good target value a priori, we can guess
# that $k_z$ will be quite close to $k_0$ in value, for instance $k_z =
# 0.5k_0^2$. Therefore, we can set a target value of $-(0.5k_0^2)$:

eps.setTarget(-((0.5 * k0) ** 2))

# Then, we need to define the number of eigenvalues we want to
# calculate. We can do this with the `setDimensions` function, where we
# specify that we are looking for just one eigenvalue:

eps.setDimensions(nev=1)

# We can finally solve the problem with the `solve` function. To gain a
# deeper insight over the simulation, we also print an output message
# from SLEPc by calling the `view` and `errorView` function:

eps.solve()
eps.view()
eps.errorView()

# Now we can get the eigenvalues and eigenvectors calculated by SLEPc
# with the following code. We also verify if the numerical $k_z$ are
# consistent with the analytical equations of the half-loaded waveguide
# modes, with the `verify_mode()` function defined in
# `analytical_modes.py`:

# +
# Save the kz
vals = [(i, np.sqrt(-eps.getEigenvalue(i))) for i in range(eps.getConverged())]

# Sort kz by real part
vals.sort(key=lambda x: x[1].real)

eh = fem.Function(V)

kz_list = []

for i, kz in vals:
    # Save eigenvector in eh
    eps.getEigenpair(i, eh.x.petsc_vec)

    # Compute error for i-th eigenvalue
    error = eps.computeError(i, SLEPc.EPS.ErrorType.RELATIVE)

    # Verify, save and visualize solution
    if error < tol and np.isclose(kz.imag, 0, atol=tol):
        kz_list.append(kz)

        # Verify if kz is consistent with the analytical equations
        assert verify_mode(kz, w, h, d, lmbd0, eps_d, eps_v, threshold=1e-4)

        print(f"eigenvalue: {-kz**2}")
        print(f"kz: {kz}")
        print(f"kz/k0: {kz / k0}")

        eh.x.scatter_forward()

        eth, ezh = eh.split()
        eth = eh.sub(0).collapse()
        ez = eh.sub(1).collapse()

        # Transform eth, ezh into Et and Ez
        eth.x.array[:] = eth.x.array[:] / kz
        ezh.x.array[:] = ezh.x.array[:] * 1j

        gdim = msh.geometry.dim
        V_dg = fem.functionspace(msh, ("DQ", degree, (gdim,)))
        Et_dg = fem.Function(V_dg)
        Et_dg.interpolate(eth)

        # Save solutions
        if hasattr(io,"VTXWriter"):
            with io.VTXWriter(msh.comm, f"sols/Et_{i}.bp", Et_dg) as f:
                f.write(0.0)
        else:
            print(f"Cannot write sols/Et_{i}.bp: VTXWriter (adios2) is not available")

        if hasattr(io,"VTXWriter"):
            with io.VTXWriter(msh.comm, f"sols/Ez_{i}.bp", ezh) as f:
                f.write(0.0)
        else:
            print(f"Cannot write sols/Ez_{i}.bp: VTXWriter (adios2) is not available")

        # Visualize solutions with Pyvista
        if have_pyvista:
            V_cells, V_types, V_x = plot.vtk_mesh(V_dg)
            V_grid = pyvista.UnstructuredGrid(V_cells, V_types, V_x)
            Et_values = np.zeros((V_x.shape[0], 3), dtype=np.float64)
            Et_values[:, : msh.topology.dim] = Et_dg.x.array.reshape(
                V_x.shape[0], msh.topology.dim
            ).real

            V_grid.point_data["u"] = Et_values

            plotter = pyvista.Plotter()
            plotter.add_mesh(V_grid.copy(), show_edges=False)
            plotter.view_xy()
            plotter.link_views()
            if not pyvista.OFF_SCREEN:
                plotter.show()
            else:
                pyvista.start_xvfb()
                plotter.screenshot("Et.png", window_size=[400, 400])

        if have_pyvista:
            V_lagr, lagr_dofs = V.sub(1).collapse()
            V_cells, V_types, V_x = plot.vtk_mesh(V_lagr)
            V_grid = pyvista.UnstructuredGrid(V_cells, V_types, V_x)
            V_grid.point_data["u"] = ezh.x.array.real[lagr_dofs]
            plotter = pyvista.Plotter()
            plotter.add_mesh(V_grid.copy(), show_edges=False)
            plotter.view_xy()
            plotter.link_views()
            if not pyvista.OFF_SCREEN:
                plotter.show()
            else:
                pyvista.start_xvfb()
                plotter.screenshot("Ez.png", window_size=[400, 400])
# -