1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.13.6
# ---
# # Variants of Lagrange elements
#
# This demo ({download}`demo_lagrange_variants.py`) illustrates how to:
#
# - Define finite elements directly using Basix
# - Create variants of Lagrange finite elements
#
# We begin this demo by importing the required modules.
# +
from mpi4py import MPI
import matplotlib.pylab as plt
import basix
import basix.ufl
import ufl # type: ignore
from dolfinx import default_real_type, fem, mesh
from ufl import dx
# -
# ## Equispaced versus Gauss--Lobatto--Legendre (GLL) points
#
# The basis functions of a Lagrange element are defined by placing
# points on the reference element, with each basis function equal to 1
# at one point and 0 at all the other points. To demonstrate the
# influence of interpolation point position, we create a degree 10
# element on an interval using equally spaced points, and plot the basis
# functions. We create this element using `basix.ufl`'s
# `element` function. The function `element.tabulate` returns a 3-dimensional
# array with shape (derivatives, points, (value size) * (basis functions)).
# In this example, we only tabulate the 0th derivative and the value
# size is 1, so we take the slice `[0, :, :]` to get a 2-dimensional
# array.
# +
element = basix.ufl.element(
basix.ElementFamily.P,
basix.CellType.interval,
10,
basix.LagrangeVariant.equispaced,
dtype=default_real_type,
)
lattice = basix.create_lattice(basix.CellType.interval, 200, basix.LatticeType.equispaced, True)
values = element.tabulate(0, lattice)[0, :, :]
if MPI.COMM_WORLD.size == 1:
for i in range(values.shape[1]):
plt.plot(lattice, values[:, i])
plt.plot(element._element.points, [0] * 11, "ko")
plt.ylim([-1, 6])
plt.savefig("demo_lagrange_variants_equispaced_10.png")
plt.clf()
# -
# 
#
# The basis functions exhibit large peaks towards the ends of the
# interval. This is known as [Runge's
# phenomenon](https://en.wikipedia.org/wiki/Runge%27s_phenomenon). The
# amplitude of the peaks increases as the degree of the element is
# increased.
#
# To rectify this issue, we can create a 'variant' of a Lagrange element
# that uses the [Gauss--Lobatto--Legendre (GLL)
# points](https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss%E2%80%93Lobatto_rules)
# to define the basis functions.
# +
element = basix.ufl.element(
basix.ElementFamily.P,
basix.CellType.interval,
10,
basix.LagrangeVariant.gll_warped,
dtype=default_real_type,
)
values = element.tabulate(0, lattice)[0, :, :]
if MPI.COMM_WORLD.size == 1: # Skip this plotting in parallel
for i in range(values.shape[1]):
plt.plot(lattice, values[:, i])
plt.plot(element._element.points, [0] * 11, "ko")
plt.ylim([-1, 6])
plt.savefig("demo_lagrange_variants_gll_10.png")
plt.clf()
# -
# 
#
# The points are clustered towards the endpoints of the interval, and
# the basis functions do not exhibit Runge's phenomenon.
#
# ## Computing the error of an interpolation
#
# To demonstrate how the choice of Lagrange variant can affect
# computed results, we compute the error when interpolating a
# function into a finite element space. For this example, we define a
# saw tooth wave that will be interpolated.
def saw_tooth(x):
f = 4 * abs(x - 0.43)
for _ in range(8):
f = abs(f - 0.3)
return f
# We begin by interpolating the saw tooth wave with the two Lagrange
# elements, and plot the finite element interpolation.
# +
msh = mesh.create_unit_interval(MPI.COMM_WORLD, 10)
x = ufl.SpatialCoordinate(msh)
u_exact = saw_tooth(x[0])
for variant in [basix.LagrangeVariant.equispaced, basix.LagrangeVariant.gll_warped]:
ufl_element = basix.ufl.element(
basix.ElementFamily.P, basix.CellType.interval, 10, variant, dtype=default_real_type
)
V = fem.functionspace(msh, ufl_element)
uh = fem.Function(V)
uh.interpolate(lambda x: saw_tooth(x[0]))
if MPI.COMM_WORLD.size == 1: # Skip this plotting in parallel
pts: list[list[float]] = []
cells: list[int] = []
for cell in range(10):
for i in range(51):
pts.append([cell / 10 + i / 50 / 10, 0, 0])
cells.append(cell)
values = uh.eval(pts, cells)
plt.plot(pts, [saw_tooth(i[0]) for i in pts], "k--")
plt.plot(pts, values, "r-")
plt.legend(["function", "approximation"])
plt.ylim([-0.1, 0.4])
plt.title(variant.name)
plt.savefig(f"demo_lagrange_variants_interpolation_{variant.name}.png")
plt.clf()
# -
# 
# 
#
# The plots illustrate that Runge's phenomenon leads to the
# interpolation being less accurate when using the equispaced variant of
# Lagrange compared to the GLL variant. To quantify the error, we
# compute the interpolation error in the $L_2$ norm,
#
# $$\left\|u - u_h\right\|_2 = \left(\int_0^1 (u - u_h)^2\right)^{\frac{1}{2}},$$
#
# where $u$ is the function and $u_h$ is its interpolation in the finite
# element space. The following code uses UFL to compute the $L_2$ error
# for the equispaced and GLL variants. The $L_2$ error for the GLL
# variant is considerably smaller than the error for the equispaced
# variant.
# +
for variant in [basix.LagrangeVariant.equispaced, basix.LagrangeVariant.gll_warped]:
ufl_element = basix.ufl.element(
basix.ElementFamily.P, basix.CellType.interval, 10, variant, dtype=default_real_type
)
V = fem.functionspace(msh, ufl_element)
uh = fem.Function(V)
uh.interpolate(lambda x: saw_tooth(x[0]))
M = fem.form((u_exact - uh) ** 2 * dx)
error = msh.comm.allreduce(fem.assemble_scalar(M), op=MPI.SUM)
print(f"Computed L2 interpolation error ({variant.name}):", error**0.5)
# -
# ## Available Lagrange variants
#
# Basix supports numerous Lagrange variants, including:
#
# - `basix.LagrangeVariant.equispaced`
# - `basix.LagrangeVariant.gll_warped`
# - `basix.LagrangeVariant.gll_isaac`
# - `basix.LagrangeVariant.gll_centroid`
# - `basix.LagrangeVariant.chebyshev_warped`
# - `basix.LagrangeVariant.chebyshev_isaac`
# - `basix.LagrangeVariant.chebyshev_centroid`
# - `basix.LagrangeVariant.gl_warped`
# - `basix.LagrangeVariant.gl_isaac`
# - `basix.LagrangeVariant.gl_centroid`
# - `basix.LagrangeVariant.legendre`
#
#
# ### Equispaced points
#
# The variant `basix.LagrangeVariant.equispaced` defines an element
# using equally spaced points on the cell.
#
#
# ### GLL points
#
# For intervals, quadrilaterals and hexahedra, the variants
# `basix.LagrangeVariant.gll_warped`, `basix.LagrangeVariant.gll_isaac`
# and `basix.LagrangeVariant.gll_centroid` all define an element using
# GLL-type points.
#
#
# On triangles and tetrahedra, the three variants use different methods
# to distribute points on the cell so that the points on each edge are
# GLL points. The three methods used are described in [the Basix
# documentation](https://docs.fenicsproject.org/basix/main/cpp/namespacebasix_1_1lattice.html).
#
#
# ### Chebyshev points
#
# The variants `basix.LagrangeVariant.chebyshev_warped`,
# `basix.LagrangeVariant.chebyshev_isaac` and
# `basix.LagrangeVariant.chebyshev_centroid` can be used to define
# elements using [Chebyshev
# points](https://en.wikipedia.org/wiki/Chebyshev_nodes). As with GLL
# points, these three variants are the same on intervals, quadrilaterals
# and hexahedra, and vary on simplex cells.
#
#
# ### GL points
#
# The variants `basix.LagrangeVariant.gl_warped`,
# `basix.LagrangeVariant.gl_isaac` and
# `basix.LagrangeVariant.gl_centroid` can be used to define elements
# using [Gauss-Legendre (GL)
# points](https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss%E2%80%93Legendre_quadrature).
# GL points do not include the endpoints, hence this variant can only be
# used for discontinuous elements.
#
#
# ### Legendre polynomials
#
# The variant `basix.LagrangeVariant.legendre` can be used to define a
# Lagrange-like element whose basis functions are the orthonormal
# Legendre polynomials. These polynomials are not defined using points
# at the endpoints, so can also only be used for discontinuous elements.
|