1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.13.6
# ---
# # Divergence conforming discontinuous Galerkin method for the Navier--Stokes equations
#
# This demo ({download}`demo_navier-stokes.py`) illustrates how to
# implement a divergence conforming discontinuous Galerkin method for
# the Navier-Stokes equations in FEniCSx. The method conserves mass
# exactly and uses upwinding. The formulation is based on a combination
# of "A fully divergence-free finite element method for
# magnetohydrodynamic equations" by Hiptmair et al., "A Note on
# Discontinuous Galerkin Divergence-free Solutions of the Navier-Stokes
# Equations" by Cockburn et al, and "On the Divergence Constraint in
# Mixed Finite Element Methods for Incompressible Flows" by John et al.
#
#
# ## Governing equations
#
# We consider the incompressible Navier-Stokes equations in a domain
# $\Omega \subset \mathbb{R}^d$, $d \in \{2, 3\}$, and time interval
# $(0, \infty)$, given by
#
# $$
# \begin{align}
# \partial_t u - \nu \Delta u + (u \cdot \nabla)u + \nabla p &= f \text{ in } \Omega_t, \\
# \nabla \cdot u &= 0 \text{ in } \Omega_t,
# \end{align}
# $$
#
# where $u: \Omega_t \to \mathbb{R}^d$ is the velocity field,
# $p: \Omega_t \to \mathbb{R}$ is the pressure field,
# $f: \Omega_t \to \mathbb{R}^d$ is a prescribed force, $\nu \in \mathbb{R}^+$
# is the kinematic viscosity, and $\Omega_t := \Omega \times (0, \infty)$.
#
# The problem is supplemented with the initial condition
#
# $$
# u(x, 0) = u_0(x) \text{ in } \Omega
# $$
#
# and boundary condition
#
# $$
# u = u_D \text{ on } \partial \Omega \times (0, \infty),
# $$
#
# where $u_0: \Omega \to \mathbb{R}^d$ is a prescribed initial velocity field
# which satisfies the divergence free condition. The pressure field is only
# determined up to a constant, so we seek the unique pressure field satisfying
#
# $$
# \int_\Omega p = 0.
# $$
#
#
#
# ## Discrete problem
#
# We begin by introducing the function spaces
#
# $$
# \begin{align}
# V_h^g &:= \left\{v \in H(\text{div}; \Omega);
# v|_K \in V_h(K) \; \forall K \in \mathcal{T}, v \cdot n = g \cdot n
# \text{ on } \partial \Omega \right\} \\
# Q_h &:= \left\{q \in L^2_0(\Omega);
# q|_K \in Q_h(K) \; \forall K \in \mathcal{T} \right\}.
# \end{align}
# $$
#
# The local spaces $V_h(K)$ and $Q_h(K)$ should satisfy
#
# $$
# \nabla \cdot V_h(K) \subseteq Q_h(K),
# $$
# in order for mass to be conserved exactly. Suitable choices on
# affine simplex cells include
#
# $$
# V_h(K) := \mathbb{RT}_k(K) \text{ and }
# Q_h(K) := \mathbb{P}_k(K),
# $$
#
# or
#
# $$
# V_h(K) := \mathbb{BDM}_k(K) \text{ and }
# Q_h(K) := \mathbb{P}_{k-1}(K).
# $$
#
# Let two cells $K^+$ and $K^-$ share a facet $F$. The trace of a
# piecewise smooth vector valued function $\phi$ on F taken approaching
# from inside $K^+$ (resp. $K^-$) is denoted $\phi^{+}$ (resp.
# $\phi^-$). We now introduce the average
# $\renewcommand{\avg}[1]{\left\{\!\!\left\{#1\right\}\!\!\right\}}$
#
# $$
# \avg{\phi} = \frac{1}{2} \left(\phi^+ + \phi^-\right)
#
# $$
#
# and jump $\renewcommand{\jump}[1]{[\![ #1 ]\!]}$
#
# $$
# \jump{\phi} = \phi^+ \otimes n^+ + \phi^- \otimes n^-,
# $$
#
# operators, where $n$ denotes the outward unit normal to $\partial K$.
# Finally, let the upwind flux of $\phi$ with respect to a vector field
# $\psi$ be defined as
#
# $$
# \hat{\phi}^\psi :=
# \begin{cases}
# \lim_{\epsilon \downarrow 0} \phi(x - \epsilon \psi(x)), \;
# x \in \partial K \setminus \Gamma^\psi, \\
# 0, \qquad \qquad \qquad \qquad x \in \partial K \cap \Gamma^\psi,
# \end{cases}
# $$
#
# where $\Gamma^\psi = \left\{x \in \Gamma; \; \psi(x) \cdot n(x) < 0\right\}$.
#
# The semi-discrete version problem (in dimensionless form) is: find
# $(u_h, p_h) \in V_h^{u_D} \times Q_h$ such that
#
# $$
# \begin{align}
# \int_\Omega \partial_t u_h \cdot v + a_h(u_h, v_h) + c_h(u_h; u_h, v_h)
# + b_h(v_h, p_h) &= \int_\Omega f \cdot v_h + L_{a_h}(v_h) + L_{c_h}(v_h)
# \quad \forall v_h \in V_h^0, \\
# b_h(u_h, q_h) &= 0 \quad \forall q_h \in Q_h,
# \end{align}
# $$
#
# where
# $\renewcommand{\sumK}[0]{\sum_{K \in \mathcal{T}_h}}$
# $\renewcommand{\sumF}[0]{\sum_{F \in \mathcal{F}_h}}$
#
# $$
# \begin{align}
# a_h(u, v) &= Re^{-1} \left(\sumK \int_K \nabla u : \nabla v
# - \sumF \int_F \avg{\nabla u} : \jump{v}
# - \sumF \int_F \avg{\nabla v} : \jump{u} \\
# + \sumF \int_F \frac{\alpha}{h_K} \jump{u} : \jump{v}\right), \\
# c_h(w; u, v) &= - \sumK \int_K u \cdot \nabla \cdot (v \otimes w)
# + \sumK \int_{\partial_K} w \cdot n \hat{u}^{w} \cdot v, \\
# L_{a_h}(v_h) &= Re^{-1} \left(- \int_{\partial \Omega} u_D \otimes n :
# \nabla_h v_h + \frac{\alpha}{h} u_D \otimes n : v_h \otimes n \right), \\
# L_{c_h}(v_h) &= - \int_{\partial \Omega} u_D \cdot n \hat{u}_D \cdot v_h, \\
# b_h(v, q) &= - \int_K \nabla \cdot v q.
# \end{align}
# $$
#
#
# ## Implementation
#
# We begin by importing the required modules and functions
import importlib.util
if importlib.util.find_spec("petsc4py") is not None:
import dolfinx
if not dolfinx.has_petsc:
print("This demo requires DOLFINx to be compiled with PETSc enabled.")
exit(0)
else:
print("This demo requires petsc4py.")
exit(0)
from mpi4py import MPI
# +
import numpy as np
from dolfinx import default_real_type, fem, io, mesh
from dolfinx.fem.petsc import assemble_matrix_block, assemble_vector_block
from ufl import (
CellDiameter,
FacetNormal,
MixedFunctionSpace,
TestFunctions,
TrialFunctions,
avg,
conditional,
div,
dot,
dS,
ds,
dx,
extract_blocks,
grad,
gt,
inner,
outer,
)
try:
from petsc4py import PETSc
import dolfinx
if not dolfinx.has_petsc:
print("This demo requires DOLFINx to be compiled with PETSc enabled.")
exit(0)
except ModuleNotFoundError:
print("This demo requires petsc4py.")
exit(0)
if np.issubdtype(PETSc.ScalarType, np.complexfloating): # type: ignore
print("Demo should only be executed with DOLFINx real mode")
exit(0)
# -
# We also define some helper functions that will be used later
# +
def norm_L2(comm, v):
"""Compute the L2(Ω)-norm of v"""
return np.sqrt(comm.allreduce(fem.assemble_scalar(fem.form(inner(v, v) * dx)), op=MPI.SUM))
def domain_average(msh, v):
"""Compute the average of a function over the domain"""
vol = msh.comm.allreduce(
fem.assemble_scalar(fem.form(fem.Constant(msh, default_real_type(1.0)) * dx)), op=MPI.SUM
)
return (1 / vol) * msh.comm.allreduce(fem.assemble_scalar(fem.form(v * dx)), op=MPI.SUM)
def u_e_expr(x):
"""Expression for the exact velocity solution to Kovasznay flow"""
return np.vstack(
(
1
- np.exp((Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0])
* np.cos(2 * np.pi * x[1]),
(Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2))
/ (2 * np.pi)
* np.exp((Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0])
* np.sin(2 * np.pi * x[1]),
)
)
def p_e_expr(x):
"""Expression for the exact pressure solution to Kovasznay flow"""
return (1 / 2) * (1 - np.exp(2 * (Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0]))
def f_expr(x):
"""Expression for the applied force"""
return np.vstack((np.zeros_like(x[0]), np.zeros_like(x[0])))
# -
# We define some simulation parameters
n = 16
num_time_steps = 25
t_end = 10
Re = 25 # Reynolds Number
k = 1 # Polynomial degree
# Next, we create a mesh and the required functions spaces over it.
# Since the velocity uses an $H(\text{div})$-conforming function
# space, we also create a vector valued discontinuous Lagrange space to
# interpolate into for artifact free visualisation.
# +
msh = mesh.create_unit_square(MPI.COMM_WORLD, n, n)
# Function spaces for the velocity and for the pressure
V = fem.functionspace(msh, ("Raviart-Thomas", k + 1))
Q = fem.functionspace(msh, ("Discontinuous Lagrange", k))
VQ = MixedFunctionSpace(V, Q)
# Funcion space for visualising the velocity field
gdim = msh.geometry.dim
W = fem.functionspace(msh, ("Discontinuous Lagrange", k + 1, (gdim,)))
# Define trial and test functions
u, p = TrialFunctions(VQ)
v, q = TestFunctions(VQ)
delta_t = fem.Constant(msh, default_real_type(t_end / num_time_steps))
alpha = fem.Constant(msh, default_real_type(6.0 * k**2))
h = CellDiameter(msh)
n = FacetNormal(msh)
def jump(phi, n):
return outer(phi("+"), n("+")) + outer(phi("-"), n("-"))
# -
# We solve the Stokes problem for the initial condition, omitting the
# convective term:
# +
a = (1.0 / Re) * (
inner(grad(u), grad(v)) * dx
- inner(avg(grad(u)), jump(v, n)) * dS
- inner(jump(u, n), avg(grad(v))) * dS
+ (alpha / avg(h)) * inner(jump(u, n), jump(v, n)) * dS
- inner(grad(u), outer(v, n)) * ds
- inner(outer(u, n), grad(v)) * ds
+ (alpha / h) * inner(outer(u, n), outer(v, n)) * ds
)
a -= inner(p, div(v)) * dx
a -= inner(div(u), q) * dx
a_blocked = fem.form(extract_blocks(a))
f = fem.Function(W)
u_D = fem.Function(V)
u_D.interpolate(u_e_expr)
L = inner(f, v) * dx + (1 / Re) * (
-inner(outer(u_D, n), grad(v)) * ds + (alpha / h) * inner(outer(u_D, n), outer(v, n)) * ds
)
L += inner(fem.Constant(msh, default_real_type(0.0)), q) * dx
L_blocked = fem.form(extract_blocks(L))
# Boundary conditions
boundary_facets = mesh.exterior_facet_indices(msh.topology)
boundary_vel_dofs = fem.locate_dofs_topological(V, msh.topology.dim - 1, boundary_facets)
bc_u = fem.dirichletbc(u_D, boundary_vel_dofs)
bcs = [bc_u]
# Assemble Stokes problem
A = assemble_matrix_block(a_blocked, bcs=bcs)
A.assemble()
b = assemble_vector_block(L_blocked, a_blocked, bcs=bcs)
# Create and configure solver
ksp = PETSc.KSP().create(msh.comm) # type: ignore
ksp.setOperators(A)
ksp.setType("preonly")
ksp.getPC().setType("lu")
ksp.getPC().setFactorSolverType("mumps")
opts = PETSc.Options() # type: ignore
opts["mat_mumps_icntl_14"] = 80 # Increase MUMPS working memory
opts["mat_mumps_icntl_24"] = 1 # Option to support solving a singular matrix (pressure nullspace)
opts["mat_mumps_icntl_25"] = 0 # Option to support solving a singular matrix (pressure nullspace)
opts["ksp_error_if_not_converged"] = 1
ksp.setFromOptions()
# Solve Stokes for initial condition
x = A.createVecRight()
try:
ksp.solve(b, x)
except PETSc.Error as e: # type: ignore
if e.ierr == 92:
print("The required PETSc solver/preconditioner is not available. Exiting.")
print(e)
exit(0)
else:
raise e
# Split the solution
u_h = fem.Function(V)
p_h = fem.Function(Q)
p_h.name = "p"
offset = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
u_h.x.array[:offset] = x.array_r[:offset]
u_h.x.scatter_forward()
p_h.x.array[: (len(x.array_r) - offset)] = x.array_r[offset:]
p_h.x.scatter_forward()
# Subtract the average of the pressure since it is only determined up to
# a constant
p_h.x.array[:] -= domain_average(msh, p_h)
u_vis = fem.Function(W)
u_vis.name = "u"
u_vis.interpolate(u_h)
# Write initial condition to file
t = 0.0
try:
u_file = io.VTXWriter(msh.comm, "u.bp", u_vis)
p_file = io.VTXWriter(msh.comm, "p.bp", p_h)
u_file.write(t)
p_file.write(t)
except AttributeError:
print("File output requires ADIOS2.")
# Create function to store solution and previous time step
u_n = fem.Function(V)
u_n.x.array[:] = u_h.x.array
# -
# Now we add the time stepping and convective terms
# +
lmbda = conditional(gt(dot(u_n, n), 0), 1, 0)
u_uw = lmbda("+") * u("+") + lmbda("-") * u("-")
a += (
inner(u / delta_t, v) * dx
- inner(u, div(outer(v, u_n))) * dx
+ inner((dot(u_n, n))("+") * u_uw, v("+")) * dS
+ inner((dot(u_n, n))("-") * u_uw, v("-")) * dS
+ inner(dot(u_n, n) * lmbda * u, v) * ds
)
a_blocked = fem.form(extract_blocks(a))
L += inner(u_n / delta_t, v) * dx - inner(dot(u_n, n) * (1 - lmbda) * u_D, v) * ds
L_blocked = fem.form(extract_blocks(L))
# Time stepping loop
for n in range(num_time_steps):
t += delta_t.value
A.zeroEntries()
fem.petsc.assemble_matrix_block(A, a_blocked, bcs=bcs) # type: ignore
A.assemble()
with b.localForm() as b_loc:
b_loc.set(0)
fem.petsc.assemble_vector_block(b, L_blocked, a_blocked, bcs=bcs) # type: ignore
# Compute solution
ksp.solve(b, x)
u_h.x.array[:offset] = x.array_r[:offset]
u_h.x.scatter_forward()
p_h.x.array[: (len(x.array_r) - offset)] = x.array_r[offset:]
p_h.x.scatter_forward()
p_h.x.array[:] -= domain_average(msh, p_h)
u_vis.interpolate(u_h)
# Write to file
try:
u_file.write(t)
p_file.write(t)
except NameError:
pass
# Update u_n
u_n.x.array[:] = u_h.x.array
try:
u_file.close()
p_file.close()
except NameError:
pass
# -
# Now we compare the computed solution to the exact solution
# +
# Function spaces for exact velocity and pressure
V_e = fem.functionspace(msh, ("Lagrange", k + 3, (gdim,)))
Q_e = fem.functionspace(msh, ("Lagrange", k + 2))
u_e = fem.Function(V_e)
u_e.interpolate(u_e_expr)
p_e = fem.Function(Q_e)
p_e.interpolate(p_e_expr)
# Compute errors
e_u = norm_L2(msh.comm, u_h - u_e)
e_div_u = norm_L2(msh.comm, div(u_h))
# This scheme conserves mass exactly, so check this
assert np.isclose(e_div_u, 0.0, atol=float(1.0e5 * np.finfo(default_real_type).eps))
p_e_avg = domain_average(msh, p_e)
e_p = norm_L2(msh.comm, p_h - (p_e - p_e_avg))
if msh.comm.rank == 0:
print(f"e_u = {e_u}")
print(f"e_div_u = {e_div_u}")
print(f"e_p = {e_p}")
# -
|