File: demo_stokes.py

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 170; xml: 55
file content (575 lines) | stat: -rw-r--r-- 19,507 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.13.6
# ---

# # Stokes equations using Taylor-Hood elements
#
# This demo is implemented in {download}`demo_stokes.py`. It shows how
# to solve the Stokes problem using Taylor-Hood elements using different
# linear solvers.
#
# ## Equation and problem definition
#
# ### Strong formulation
#
# $$
# \begin{align}
#   - \nabla \cdot (\nabla u + p I) &= f \quad {\rm in} \ \Omega,\\
#   \nabla \cdot u &= 0 \quad {\rm in} \ \Omega.
# \end{align}
# $$
#
# with conditions on the boundary $\partial \Omega = \Gamma_{D} \cup
# \Gamma_{N}$ of the form:
#
# $$
# \begin{align}
#   u &= u_0 \quad {\rm on} \ \Gamma_{D},\\
#   \nabla u \cdot n + p n &= g \,   \quad\;\; {\rm on} \ \Gamma_{N}.
# \end{align}
# $$
#
# ```{note}
# The sign of the pressure has been changed from the usual
# definition. This is to generate have a symmetric system
# of equations.
# ```
#
# ### Weak formulation
#
# The weak formulation reads: find $(u, p) \in V \times Q$ such that
#
# $$
# a((u, p), (v, q)) = L((v, q)) \quad \forall  (v, q) \in V \times Q
# $$
#
# where
#
# $$
# \begin{align}
#   a((u, p), (v, q)) &:= \int_{\Omega} \nabla u \cdot \nabla v -
#            \nabla \cdot v \ p + \nabla \cdot u \ q \, {\rm d} x,
#   L((v, q)) &:= \int_{\Omega} f \cdot v \, {\rm d} x + \int_{\partial
#            \Omega_N} g \cdot v \, {\rm d} s.
# \end{align}
# $$
#
# ### Domain and boundary conditions
#
# We consider the lid-driven cavity problem with the following
# domain and boundary conditions:
#
# - $\Omega := [0,1]\times[0,1]$ (a unit square)
# - $\Gamma_D := \partial \Omega$
# - $u_0 := (1, 0)^\top$ at $x_1 = 1$ and $u_0 = (0, 0)^\top$ otherwise
# - $f := (0, 0)^\top$
#
#
# ## Implementation
#
# The Stokes problem using Taylor-Hood elements is solved using:
# 1. [Block preconditioner using PETSc MatNest and VecNest data
#    structures. Each 'block' is a standalone object.](#nested-matrix-solver)
# 1. [Block preconditioner with the `u` and `p` fields stored block-wise
#    in a single matrix](#monolithic-block-iterative-solver)
# 1. [Direct solver with the `u` and `p` fields stored block-wise in a
#    single matrix](#monolithic-block-direct-solver)
# 1. [Direct solver with the `u` and `p` fields stored block-wise in a
#    single matrix](#non-blocked-direct-solver)
#
# The required modules are first imported:

from mpi4py import MPI

try:
    from petsc4py import PETSc

    import dolfinx

    if not dolfinx.has_petsc:
        print("This demo requires DOLFINx to be compiled with PETSc enabled.")
        exit(0)
except ModuleNotFoundError:
    print("This demo requires petsc4py.")
    exit(0)

import numpy as np

import ufl
from basix.ufl import element, mixed_element
from dolfinx import default_real_type, fem, la
from dolfinx.fem import (
    Constant,
    Function,
    dirichletbc,
    extract_function_spaces,
    form,
    functionspace,
    locate_dofs_topological,
)
from dolfinx.fem.petsc import assemble_matrix_block, assemble_vector_block
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType, create_rectangle, locate_entities_boundary
from ufl import div, dx, grad, inner

# We create a {py:class}`Mesh <dolfinx.mesh.Mesh>`, define functions for
# locating geometrically subsets of the boundary, and define a function
# for the  velocity on the lid:

# +
# Create mesh
msh = create_rectangle(
    MPI.COMM_WORLD, [np.array([0, 0]), np.array([1, 1])], [32, 32], CellType.triangle
)


# Function to mark x = 0, x = 1 and y = 0
def noslip_boundary(x):
    return np.isclose(x[0], 0.0) | np.isclose(x[0], 1.0) | np.isclose(x[1], 0.0)


# Function to mark the lid (y = 1)
def lid(x):
    return np.isclose(x[1], 1.0)


# Lid velocity
def lid_velocity_expression(x):
    return np.stack((np.ones(x.shape[1]), np.zeros(x.shape[1])))


# -

# Two {py:class}`function spaces <dolfinx.fem.FunctionSpace>` are
# defined using different finite elements. `P2` corresponds to a
# continuous piecewise quadratic basis (vector) and `P1` to a continuous
# piecewise linear basis (scalar).


P2 = element("Lagrange", msh.basix_cell(), 2, shape=(msh.geometry.dim,), dtype=default_real_type)
P1 = element("Lagrange", msh.basix_cell(), 1, dtype=default_real_type)
V, Q = functionspace(msh, P2), functionspace(msh, P1)

# Boundary conditions for the velocity field are defined:

# +
# No-slip condition on boundaries where x = 0, x = 1, and y = 0
noslip = np.zeros(msh.geometry.dim, dtype=PETSc.ScalarType)  # type: ignore
facets = locate_entities_boundary(msh, 1, noslip_boundary)
bc0 = dirichletbc(noslip, locate_dofs_topological(V, 1, facets), V)

# Driving (lid) velocity condition on top boundary (y = 1)
lid_velocity = Function(V)
lid_velocity.interpolate(lid_velocity_expression)
facets = locate_entities_boundary(msh, 1, lid)
bc1 = dirichletbc(lid_velocity, locate_dofs_topological(V, 1, facets))

# Collect Dirichlet boundary conditions
bcs = [bc0, bc1]
# -

# The bilinear and linear forms for the Stokes equations are defined
# using a a blocked structure:

# +
# Define variational problem
(u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q)
(v, q) = ufl.TestFunction(V), ufl.TestFunction(Q)
f = Constant(msh, (PETSc.ScalarType(0), PETSc.ScalarType(0)))  # type: ignore

a = form([[inner(grad(u), grad(v)) * dx, inner(p, div(v)) * dx], [inner(div(u), q) * dx, None]])
L = form([inner(f, v) * dx, inner(Constant(msh, PETSc.ScalarType(0)), q) * dx])  # type: ignore
# -

# A block-diagonal preconditioner will be used with the iterative
# solvers for this problem:

a_p11 = form(inner(p, q) * dx)
a_p = [[a[0][0], None], [None, a_p11]]

# ### Nested matrix solver
#
# We assemble the bilinear form into a nested matrix `A`, and call the
# `assemble()` method to communicate shared entries in parallel. Rows
# and columns in `A` that correspond to degrees-of-freedom with
# Dirichlet boundary conditions wil be zeroed by the assembler, and a
# value of 1 will be set on the diagonal for these rows.


def nested_iterative_solver():
    """Solve the Stokes problem using nest matrices and an iterative solver."""

    # Assemble nested matrix operators
    A = fem.petsc.assemble_matrix_nest(a, bcs=bcs)
    A.assemble()

    # Create a nested matrix P to use as the preconditioner. The
    # top-left block of P is shared with the top-left block of A. The
    # bottom-right diagonal entry is assembled from the form a_p11:
    P11 = fem.petsc.assemble_matrix(a_p11, [])
    P = PETSc.Mat().createNest([[A.getNestSubMatrix(0, 0), None], [None, P11]])
    P.assemble()

    A00 = A.getNestSubMatrix(0, 0)
    A00.setOption(PETSc.Mat.Option.SPD, True)

    P00, P11 = P.getNestSubMatrix(0, 0), P.getNestSubMatrix(1, 1)
    P00.setOption(PETSc.Mat.Option.SPD, True)
    P11.setOption(PETSc.Mat.Option.SPD, True)

    # Assemble right-hand side vector
    b = fem.petsc.assemble_vector_nest(L)

    # Modify ('lift') the RHS for Dirichlet boundary conditions
    fem.petsc.apply_lifting_nest(b, a, bcs=bcs)

    # Sum contributions for vector entries that are share across
    # parallel processes
    for b_sub in b.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    # Set Dirichlet boundary condition values in the RHS vector
    bcs0 = fem.bcs_by_block(extract_function_spaces(L), bcs)
    fem.petsc.set_bc_nest(b, bcs0)

    # The pressure field is determined only up to a constant. We supply
    # a vector that spans the nullspace to the solver, and any component
    # of the solution in this direction will be eliminated during the
    # solution process.
    null_vec = fem.petsc.create_vector_nest(L)

    # Set velocity part to zero and the pressure part to a non-zero
    # constant
    null_vecs = null_vec.getNestSubVecs()
    null_vecs[0].set(0.0), null_vecs[1].set(1.0)

    # Normalize the vector that spans the nullspace, create a nullspace
    # object, and attach it to the matrix
    null_vec.normalize()
    nsp = PETSc.NullSpace().create(vectors=[null_vec])
    assert nsp.test(A)
    A.setNullSpace(nsp)

    # Create a MINRES Krylov solver and a block-diagonal preconditioner
    # using PETSc's additive fieldsplit preconditioner
    ksp = PETSc.KSP().create(msh.comm)
    ksp.setOperators(A, P)
    ksp.setType("minres")
    ksp.setTolerances(rtol=1e-9)
    ksp.getPC().setType("fieldsplit")
    ksp.getPC().setFieldSplitType(PETSc.PC.CompositeType.ADDITIVE)

    # Define the matrix blocks in the preconditioner with the velocity
    # and pressure matrix index sets
    nested_IS = P.getNestISs()
    ksp.getPC().setFieldSplitIS(("u", nested_IS[0][0]), ("p", nested_IS[0][1]))

    # Set the preconditioners for each block. For the top-left
    # Laplace-type operator we use algebraic multigrid. For the
    # lower-right block we use a Jacobi preconditioner. By default, GAMG
    # will infer the correct near-nullspace from the matrix block size.
    ksp_u, ksp_p = ksp.getPC().getFieldSplitSubKSP()
    ksp_u.setType("preonly")
    ksp_u.getPC().setType("gamg")
    ksp_p.setType("preonly")
    ksp_p.getPC().setType("jacobi")

    # Create finite element {py:class}`Function <dolfinx.fem.Function>`s
    # for the velocity (on the space `V`) and for the pressure (on the
    # space `Q`). The vectors for `u` and `p` are combined to form a
    # nested vector and the system is solved.
    u, p = Function(V), Function(Q)
    x = PETSc.Vec().createNest([la.create_petsc_vector_wrap(u.x), la.create_petsc_vector_wrap(p.x)])
    ksp.solve(b, x)

    # Save solution to file in XDMF format for visualization, e.g. with
    # ParaView. Before writing to file, ghost values are updated using
    # `scatter_forward`.
    with XDMFFile(MPI.COMM_WORLD, "out_stokes/velocity.xdmf", "w") as ufile_xdmf:
        u.x.scatter_forward()
        P1 = element(
            "Lagrange", msh.basix_cell(), 1, shape=(msh.geometry.dim,), dtype=default_real_type
        )
        u1 = Function(functionspace(msh, P1))
        u1.interpolate(u)
        ufile_xdmf.write_mesh(msh)
        ufile_xdmf.write_function(u1)

    with XDMFFile(MPI.COMM_WORLD, "out_stokes/pressure.xdmf", "w") as pfile_xdmf:
        p.x.scatter_forward()
        pfile_xdmf.write_mesh(msh)
        pfile_xdmf.write_function(p)

    # Compute norms of the solution vectors
    norm_u = la.norm(u.x)
    norm_p = la.norm(p.x)
    if MPI.COMM_WORLD.rank == 0:
        print(f"(A) Norm of velocity coefficient vector (nested, iterative): {norm_u}")
        print(f"(A) Norm of pressure coefficient vector (nested, iterative): {norm_p}")

    return norm_u, norm_p


# ### Monolithic block iterative solver
#
# We now solve the same Stokes problem, but using monolithic
# (non-nested) matrices. We first create a helper function for
# assembling the linear operators and the RHS vector.


def block_operators():
    """Return block operators and block RHS vector for the Stokes
    problem"""

    # Assembler matrix operator, preconditioner and RHS vector into
    # single objects but preserving block structure
    A = assemble_matrix_block(a, bcs=bcs)
    A.assemble()
    P = assemble_matrix_block(a_p, bcs=bcs)
    P.assemble()
    b = assemble_vector_block(L, a, bcs=bcs)

    # Set the nullspace for pressure (since pressure is determined only
    # up to a constant)
    null_vec = A.createVecLeft()
    offset = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
    null_vec.array[offset:] = 1.0
    null_vec.normalize()
    nsp = PETSc.NullSpace().create(vectors=[null_vec])
    assert nsp.test(A)
    A.setNullSpace(nsp)

    return A, P, b


# The following function solves the Stokes problem using a
# block-diagonal preconditioner and monolithic PETSc matrices.


def block_iterative_solver():
    """Solve the Stokes problem using blocked matrices and an iterative
    solver."""

    # Assembler the operators and RHS vector
    A, P, b = block_operators()

    # Build PETSc index sets for each field (global dof indices for each
    # field)
    V_map = V.dofmap.index_map
    Q_map = Q.dofmap.index_map
    offset_u = V_map.local_range[0] * V.dofmap.index_map_bs + Q_map.local_range[0]
    offset_p = offset_u + V_map.size_local * V.dofmap.index_map_bs
    is_u = PETSc.IS().createStride(
        V_map.size_local * V.dofmap.index_map_bs, offset_u, 1, comm=PETSc.COMM_SELF
    )
    is_p = PETSc.IS().createStride(Q_map.size_local, offset_p, 1, comm=PETSc.COMM_SELF)

    # Create a MINRES Krylov solver and a block-diagonal preconditioner
    # using PETSc's additive fieldsplit preconditioner
    ksp = PETSc.KSP().create(msh.comm)
    ksp.setOperators(A, P)
    ksp.setTolerances(rtol=1e-9)
    ksp.setType("minres")
    ksp.getPC().setType("fieldsplit")
    ksp.getPC().setFieldSplitType(PETSc.PC.CompositeType.ADDITIVE)
    ksp.getPC().setFieldSplitIS(("u", is_u), ("p", is_p))

    # Configure velocity and pressure sub-solvers
    ksp_u, ksp_p = ksp.getPC().getFieldSplitSubKSP()
    ksp_u.setType("preonly")
    ksp_u.getPC().setType("gamg")
    ksp_p.setType("preonly")
    ksp_p.getPC().setType("jacobi")

    # The matrix A combined the vector velocity and scalar pressure
    # parts, hence has a block size of 1. Unlike the MatNest case, GAMG
    # cannot infer the correct near-nullspace from the matrix block
    # size. Therefore, we set block size on the top-left block of the
    # preconditioner so that GAMG can infer the appropriate near
    # nullspace.
    ksp.getPC().setUp()
    Pu, _ = ksp_u.getPC().getOperators()
    Pu.setBlockSize(msh.topology.dim)

    # Create a block vector (x) to store the full solution and solve
    x = A.createVecRight()
    ksp.solve(b, x)

    # Create Functions to split u and p
    u, p = Function(V), Function(Q)
    offset = V_map.size_local * V.dofmap.index_map_bs
    u.x.array[:offset] = x.array_r[:offset]
    p.x.array[: (len(x.array_r) - offset)] = x.array_r[offset:]

    # Compute the $L^2$ norms of the solution vectors
    norm_u, norm_p = la.norm(u.x), la.norm(p.x)
    if MPI.COMM_WORLD.rank == 0:
        print(f"(B) Norm of velocity coefficient vector (blocked, iterative): {norm_u}")
        print(f"(B) Norm of pressure coefficient vector (blocked, iterative): {norm_p}")

    return norm_u, norm_p


# ### Monolithic block direct solver
#
# We now solve the same Stokes problem again, but using monolithic
# (non-nested) matrices and a direct (LU) solver.


def block_direct_solver():
    """Solve the Stokes problem using blocked matrices and a direct
    solver."""

    # Assembler the block operator and RHS vector
    A, _, b = block_operators()

    # Create a solver
    ksp = PETSc.KSP().create(msh.comm)
    ksp.setOperators(A)
    ksp.setType("preonly")

    # Set the solver type to MUMPS (LU solver) and configure MUMPS to
    # handle pressure nullspace
    pc = ksp.getPC()
    pc.setType("lu")
    pc.setFactorSolverType("mumps")
    try:
        pc.setFactorSetUpSolverType()
    except PETSc.Error as e:
        if e.ierr == 92:
            print("The required PETSc solver/preconditioner is not available. Exiting.")
            print(e)
            exit(0)
        else:
            raise e
    pc.getFactorMatrix().setMumpsIcntl(icntl=24, ival=1)  # For pressure nullspace
    pc.getFactorMatrix().setMumpsIcntl(icntl=25, ival=0)  # For pressure nullspace

    # Create a block vector (x) to store the full solution, and solve
    x = A.createVecLeft()
    ksp.solve(b, x)

    # Create Functions and scatter x solution
    u, p = Function(V), Function(Q)
    offset = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
    u.x.array[:offset] = x.array_r[:offset]
    p.x.array[: (len(x.array_r) - offset)] = x.array_r[offset:]

    # Compute the $L^2$ norms of the u and p vectors
    norm_u, norm_p = la.norm(u.x), la.norm(p.x)
    if MPI.COMM_WORLD.rank == 0:
        print(f"(C) Norm of velocity coefficient vector (blocked, direct): {norm_u}")
        print(f"(C) Norm of pressure coefficient vector (blocked, direct): {norm_p}")

    return norm_u, norm_p


# ### Non-blocked direct solver
#
# We now solve the Stokes problem, but using monolithic matrix with the
# velocity and pressure degrees of freedom interleaved, i.e. without any
# u/p block structure in the assembled matrix. A direct (LU) solver is
# used.


def mixed_direct():
    # Create the Taylot-Hood function space
    TH = mixed_element([P2, P1])
    W = functionspace(msh, TH)

    # No slip boundary condition
    W0 = W.sub(0)
    Q, _ = W0.collapse()
    noslip = Function(Q)
    facets = locate_entities_boundary(msh, 1, noslip_boundary)
    dofs = locate_dofs_topological((W0, Q), 1, facets)
    bc0 = dirichletbc(noslip, dofs, W0)

    # Driving velocity condition u = (1, 0) on top boundary (y = 1)
    lid_velocity = Function(Q)
    lid_velocity.interpolate(lid_velocity_expression)
    facets = locate_entities_boundary(msh, 1, lid)
    dofs = locate_dofs_topological((W0, Q), 1, facets)
    bc1 = dirichletbc(lid_velocity, dofs, W0)

    # Collect Dirichlet boundary conditions
    bcs = [bc0, bc1]

    # Define variational problem
    (u, p) = ufl.TrialFunctions(W)
    (v, q) = ufl.TestFunctions(W)
    f = Function(Q)
    a = form((inner(grad(u), grad(v)) + inner(p, div(v)) + inner(div(u), q)) * dx)
    L = form(inner(f, v) * dx)

    # Assemble LHS matrix and RHS vector
    A = fem.petsc.assemble_matrix(a, bcs=bcs)
    A.assemble()
    b = fem.petsc.assemble_vector(L)

    fem.petsc.apply_lifting(b, [a], bcs=[bcs])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    # Set Dirichlet boundary condition values in the RHS
    for bc in bcs:
        bc.set(b)

    # Create and configure solver
    ksp = PETSc.KSP().create(msh.comm)
    ksp.setOperators(A)
    ksp.setType("preonly")

    # Configure MUMPS to handle pressure nullspace
    pc = ksp.getPC()
    pc.setType("lu")
    pc.setFactorSolverType("mumps")
    pc.setFactorSetUpSolverType()
    pc.getFactorMatrix().setMumpsIcntl(icntl=24, ival=1)
    pc.getFactorMatrix().setMumpsIcntl(icntl=25, ival=0)

    # Compute the solution
    U = Function(W)
    try:
        ksp.solve(b, U.x.petsc_vec)
    except PETSc.Error as e:
        if e.ierr == 92:
            print("The required PETSc solver/preconditioner is not available. Exiting.")
            print(e)
            exit(0)
        else:
            raise e

    # Split the mixed solution and collapse
    u, p = U.sub(0).collapse(), U.sub(1).collapse()

    # Compute norms
    norm_u, norm_p = la.norm(u.x), la.norm(p.x)
    if MPI.COMM_WORLD.rank == 0:
        print(f"(D) Norm of velocity coefficient vector (monolithic, direct): {norm_u}")
        print(f"(D) Norm of pressure coefficient vector (monolithic, direct): {norm_p}")

    return norm_u, norm_u


# Solve using PETSc MatNest
norm_u_0, norm_p_0 = nested_iterative_solver()

# Solve using PETSc block matrices and an iterative solver
norm_u_1, norm_p_1 = block_iterative_solver()
np.testing.assert_allclose(norm_u_1, norm_u_0, rtol=1e-4)
np.testing.assert_allclose(norm_u_1, norm_u_0, rtol=1e-4)

# Solve using PETSc block matrices and an LU solver
norm_u_2, norm_p_2 = block_direct_solver()
np.testing.assert_allclose(norm_u_2, norm_u_0, rtol=1e-4)
np.testing.assert_allclose(norm_p_2, norm_p_0, rtol=1e-4)

# Solve using a non-blocked matrix and an LU solver
norm_u_3, norm_p_3 = mixed_direct()
np.testing.assert_allclose(norm_u_3, norm_u_0, rtol=1e-4)