1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.13.6
# ---
# # Creating TNT elements using Basix's custom element interface
#
# Basix provides numerous finite elements, but there are many other
# possible elements a user may want to use. This demo
# ({download}`demo_tnt-elements.py`) shows how the Basix custom element
# interface can be used to define elements. More detailed information
# about the inputs needed to create a custom element can be found in
# [the Basix
# documentation](https://docs.fenicsproject.org/basix/main/python/demo/demo_custom_element.py.html).
#
# We begin this demo by importing the required modules.
import importlib.util
if importlib.util.find_spec("petsc4py") is not None:
import dolfinx
if not dolfinx.has_petsc:
print("This demo requires DOLFINx to be compiled with PETSc enabled.")
exit(0)
else:
print("This demo requires petsc4py.")
exit(0)
from mpi4py import MPI
# +
import matplotlib as mpl
import matplotlib.pylab as plt
import numpy as np
import basix
import basix.ufl
from dolfinx import default_real_type, fem, mesh
from dolfinx.fem.petsc import LinearProblem
from ufl import SpatialCoordinate, TestFunction, TrialFunction, cos, div, dx, grad, inner, sin
mpl.use("agg")
# -
# ## Defining a degree 1 TNT element
#
# We will define [tiniest tensor
# (TNT)](https://defelement.com/elements/tnt.html) elements on a
# quadrilateral ([Commuting diagrams for the TNT elements on cubes
# (Cockburn, Qiu,
# 2014)](https://doi.org/10.1090/S0025-5718-2013-02729-9)).
#
# ### The polynomial set
#
# We begin by defining a basis of the polynomial space spanned by the
# TNT element, which is defined in terms of the orthogonal Legendre
# polynomials on the cell. For a degree 1 element, the polynomial set
# contains $1$, $y$, $y^2$, $x$, $xy$, $xy^2$, $x^2$, and $x^2y$, which
# are the first 8 polynomials in the degree 2 set of polynomials on a
# quadrilateral. We create an $8 \times 9$ matrix (number of dofs by
# number of polynomials in the degree 2 set) with an $8 \times 8$
# identity in the first 8 columns. The order in which polynomials appear
# in the polynomial sets for each cell can be found in the [Basix
# documentation](https://docs.fenicsproject.org/basix/main/polyset-order.html).
wcoeffs = np.eye(8, 9)
# For elements where the coefficients matrix is not an identity, we can
# use the properties of orthonormal polynomials to compute `wcoeffs`.
# Let $\{q_0, q_1,\dots\}$ be the orthonormal polynomials of a given
# degree for a given cell, and suppose that we're trying to represent a function
# $f_i\in\operatorname{span}\{q_1, q_2,\dots\}$ (as $\{f_0, f_1,\dots\}$ is a
# basis of the polynomial space for our element). Using the properties of
# orthonormal polynomials, we see that
# $f_i = \sum_j\left(\int_R f_iq_j\,\mathrm{d}\mathbf{x}\right)q_j$,
# and so the coefficients are given by
# $a_{ij}=\int_R f_iq_j\,\mathrm{d}\mathbf{x}$.
# Hence we could compute `wcoeffs` as follows:
# +
wcoeffs2 = np.empty((8, 9))
pts, wts = basix.make_quadrature(basix.CellType.quadrilateral, 4)
evals = basix.tabulate_polynomials(
basix.PolynomialType.legendre, basix.CellType.quadrilateral, 2, pts
)
for j, v in enumerate(evals):
wcoeffs2[0, j] = sum(v * wts) # 1
wcoeffs2[1, j] = sum(v * pts[:, 1] * wts) # y
wcoeffs2[2, j] = sum(v * pts[:, 1] ** 2 * wts) # y^2
wcoeffs2[3, j] = sum(v * pts[:, 0] * pts[:, 1] * wts) # xy
wcoeffs2[4, j] = sum(v * pts[:, 0] * pts[:, 1] ** 2 * wts) # xy^2
wcoeffs2[5, j] = sum(v * pts[:, 0] ** 2 * pts[:, 1] * wts) # x^2y
# -
# ### Interpolation operators
#
# We provide the information that defines the DOFs associated with each
# sub-entity of the cell. First, we associate a point evaluation with
# each vertex.
# +
geometry = basix.geometry(basix.CellType.quadrilateral)
topology = basix.topology(basix.CellType.quadrilateral)
x = [[], [], [], []] # type: ignore [var-annotated]
M = [[], [], [], []] # type: ignore [var-annotated]
for v in topology[0]:
x[0].append(np.array(geometry[v]))
M[0].append(np.array([[[[1.0]]]]))
# -
# For each edge, we define points and a matrix that represent the
# integral of the function along that edge. We do this by mapping
# quadrature points to the edge and putting quadrature points in the
# matrix.
# +
pts, wts = basix.make_quadrature(basix.CellType.interval, 2)
for e in topology[1]:
v0 = geometry[e[0]]
v1 = geometry[e[1]]
edge_pts = np.array([v0 + p * (v1 - v0) for p in pts])
x[1].append(edge_pts)
mat = np.zeros((1, 1, pts.shape[0], 1))
mat[0, 0, :, 0] = wts
M[1].append(mat)
# -
# There are no DOFs associated with the interior of the cell for the
# lowest order TNT element, so we associate an empty list of points and
# an empty matrix with the interior.
x[2].append(np.zeros([0, 2]))
M[2].append(np.zeros([0, 1, 0, 1]))
# ### Creating the Basix element
#
# We now create the element. Using the Basix UFL interface, we can wrap
# this element so that it can be used with FFCx/DOLFINx.
tnt_degree1 = basix.ufl.custom_element(
basix.CellType.quadrilateral,
[],
wcoeffs,
x,
M,
0,
basix.MapType.identity,
basix.SobolevSpace.H1,
False,
1,
2,
dtype=default_real_type,
)
# ## Creating higher degree TNT elements
#
# The following function follows the same method as above to define
# arbitrary degree TNT elements.
def create_tnt_quad(degree):
assert degree > 1
# Polyset
ndofs = (degree + 1) ** 2 + 4
npoly = (degree + 2) ** 2
wcoeffs = np.zeros((ndofs, npoly))
dof_n = 0
for i in range(degree + 1):
for j in range(degree + 1):
wcoeffs[dof_n, i * (degree + 2) + j] = 1
dof_n += 1
for i, j in [(degree + 1, 1), (degree + 1, 0), (1, degree + 1), (0, degree + 1)]:
wcoeffs[dof_n, i * (degree + 2) + j] = 1
dof_n += 1
# Interpolation
geometry = basix.geometry(basix.CellType.quadrilateral)
topology = basix.topology(basix.CellType.quadrilateral)
x = [[], [], [], []]
M = [[], [], [], []]
# Vertices
for v in topology[0]:
x[0].append(np.array(geometry[v]))
M[0].append(np.array([[[[1.0]]]]))
# Edges
pts, wts = basix.make_quadrature(basix.CellType.interval, 2 * degree)
poly = basix.tabulate_polynomials(
basix.PolynomialType.legendre, basix.CellType.interval, degree - 1, pts
)
edge_ndofs = poly.shape[0]
for e in topology[1]:
v0 = geometry[e[0]]
v1 = geometry[e[1]]
edge_pts = np.array([v0 + p * (v1 - v0) for p in pts])
x[1].append(edge_pts)
mat = np.zeros((edge_ndofs, 1, len(pts), 1))
for i in range(edge_ndofs):
mat[i, 0, :, 0] = wts[:] * poly[i, :]
M[1].append(mat)
# Interior
if degree == 1:
x[2].append(np.zeros([0, 2]))
M[2].append(np.zeros([0, 1, 0, 1]))
else:
pts, wts = basix.make_quadrature(basix.CellType.quadrilateral, 2 * degree - 1)
poly = basix.tabulate_polynomials(
basix.PolynomialType.legendre, basix.CellType.quadrilateral, degree - 2, pts
)
face_ndofs = poly.shape[0]
x[2].append(pts)
mat = np.zeros((face_ndofs, 1, len(pts), 1))
for i in range(face_ndofs):
mat[i, 0, :, 0] = wts[:] * poly[i, :]
M[2].append(mat)
return basix.ufl.custom_element(
basix.CellType.quadrilateral,
[],
wcoeffs,
x,
M,
0,
basix.MapType.identity,
basix.SobolevSpace.H1,
False,
degree,
degree + 1,
dtype=default_real_type,
)
# ## Comparing TNT elements and Q elements
#
# We now use the code above to compare TNT elements and
# [Q](https://defelement.com/elements/lagrange.html) elements on
# quadrilaterals. The following function takes a DOLFINx function space
# as input, and solves a Poisson problem and returns the $L_2$ error of
# the solution.
def poisson_error(V: fem.FunctionSpace):
msh = V.mesh
u, v = TrialFunction(V), TestFunction(V)
x = SpatialCoordinate(msh)
u_exact = sin(10 * x[1]) * cos(15 * x[0])
f = -div(grad(u_exact))
a = inner(grad(u), grad(v)) * dx
L = inner(f, v) * dx
# Create Dirichlet boundary condition
u_bc = fem.Function(V)
u_bc.interpolate(lambda x: np.sin(10 * x[1]) * np.cos(15 * x[0]))
msh.topology.create_connectivity(msh.topology.dim - 1, msh.topology.dim)
bndry_facets = mesh.exterior_facet_indices(msh.topology)
bdofs = fem.locate_dofs_topological(V, msh.topology.dim - 1, bndry_facets)
bc = fem.dirichletbc(u_bc, bdofs)
# Solve
problem = LinearProblem(a, L, bcs=[bc], petsc_options={"ksp_rtol": 1e-12})
uh = problem.solve()
M = (u_exact - uh) ** 2 * dx
M = fem.form(M)
error = msh.comm.allreduce(fem.assemble_scalar(M), op=MPI.SUM)
return error**0.5
# We create a mesh, then solve the Poisson problem using our TNT
# elements of degree 1 to 8. We then do the same with Q elements of
# degree 1 to 9. For the TNT elements, we store a number 1 larger than
# the degree as this is the highest degree polynomial in the space.
# +
msh = mesh.create_unit_square(MPI.COMM_WORLD, 15, 15, mesh.CellType.quadrilateral)
tnt_ndofs = []
tnt_degrees = []
tnt_errors = []
V = fem.functionspace(msh, tnt_degree1)
tnt_degrees.append(2)
tnt_ndofs.append(V.dofmap.index_map.size_global)
tnt_errors.append(poisson_error(V))
print(f"TNT degree 2 error: {tnt_errors[-1]}")
for degree in range(2, 9):
V = fem.functionspace(msh, create_tnt_quad(degree))
tnt_degrees.append(degree + 1)
tnt_ndofs.append(V.dofmap.index_map.size_global)
tnt_errors.append(poisson_error(V))
print(f"TNT degree {degree} error: {tnt_errors[-1]}")
q_ndofs = []
q_degrees = []
q_errors = []
for degree in range(1, 9):
V = fem.functionspace(msh, ("Q", degree))
q_degrees.append(degree)
q_ndofs.append(V.dofmap.index_map.size_global)
q_errors.append(poisson_error(V))
print(f"Q degree {degree} error: {q_errors[-1]}")
# -
# We now plot the data that we have obtained. First we plot the error
# against the polynomial degree for the two elements. The two elements
# appear to perform equally well.
if MPI.COMM_WORLD.rank == 0: # Only plot on one rank
plt.plot(q_degrees, q_errors, "bo-")
plt.plot(tnt_degrees, tnt_errors, "gs-")
plt.yscale("log")
plt.xlabel("Polynomial degree")
plt.ylabel("Error")
plt.legend(["Q", "TNT"])
plt.savefig("demo_tnt-elements_degrees_vs_error.png")
plt.clf()
# 
#
# A key advantage of TNT elements is that for a given degree, they span
# a smaller polynomial space than Q elements. This can be observed in
# the following diagram, where we plot the error against the square root
# of the number of DOFs (providing a measure of cell size in 2D)
if MPI.COMM_WORLD.rank == 0: # Only plot on one rank
plt.plot(np.sqrt(q_ndofs), q_errors, "bo-")
plt.plot(np.sqrt(tnt_ndofs), tnt_errors, "gs-")
plt.yscale("log")
plt.xlabel("Square root of number of DOFs")
plt.ylabel("Error")
plt.legend(["Q", "TNT"])
plt.savefig("demo_tnt-elements_ndofs_vs_error.png")
plt.clf()
# 
|