1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
# Copyright (C) 2019 Chris Richardson
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Unit tests for assembly over domains"""
from mpi4py import MPI
import numpy as np
import pytest
import ufl
from dolfinx import cpp as _cpp
from dolfinx import default_scalar_type, fem, la
from dolfinx.fem import Constant, Function, assemble_scalar, dirichletbc, form, functionspace
from dolfinx.mesh import (
GhostMode,
Mesh,
create_unit_square,
locate_entities,
locate_entities_boundary,
meshtags,
meshtags_from_entities,
)
@pytest.fixture
def mesh():
return create_unit_square(MPI.COMM_WORLD, 10, 10)
def create_cell_meshtags_from_entities(mesh: Mesh, dim: int, cells: np.ndarray, values: np.ndarray):
mesh.topology.create_connectivity(mesh.topology.dim, 0)
cell_to_vertices = mesh.topology.connectivity(mesh.topology.dim, 0)
entities = _cpp.graph.AdjacencyList_int32(
np.array([cell_to_vertices.links(cell) for cell in cells])
)
return meshtags_from_entities(mesh, dim, entities, values)
parametrize_ghost_mode = pytest.mark.parametrize(
"mode",
[
pytest.param(
GhostMode.none,
marks=pytest.mark.skipif(
condition=MPI.COMM_WORLD.size > 1,
reason="Unghosted interior facets fail in parallel",
),
),
GhostMode.shared_facet,
],
)
@pytest.mark.parametrize("mode", [GhostMode.none, GhostMode.shared_facet])
@pytest.mark.parametrize("meshtags_factory", [meshtags, create_cell_meshtags_from_entities])
def test_assembly_dx_domains(mode, meshtags_factory):
mesh = create_unit_square(MPI.COMM_WORLD, 10, 10, ghost_mode=mode)
V = functionspace(mesh, ("Lagrange", 1))
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
# Prepare a marking structures
# indices cover all cells
# values are [1, 2, 3, 3, ...]
cell_map = mesh.topology.index_map(mesh.topology.dim)
num_cells = cell_map.size_local + cell_map.num_ghosts
indices = np.arange(0, num_cells)
values = np.full(indices.shape, 3, dtype=np.int32)
values[0] = 1
values[1] = 2
marker = meshtags_factory(mesh, mesh.topology.dim, indices, values)
dx = ufl.Measure("dx", subdomain_data=marker, domain=mesh)
w = Function(V)
w.x.array[:] = 0.5
# Assemble matrix
a = form(w * ufl.inner(u, v) * (dx(1) + dx(2) + dx(3)))
A = fem.assemble_matrix(a)
A.scatter_reverse()
a2 = form(w * ufl.inner(u, v) * dx)
A2 = fem.assemble_matrix(a2)
A2.scatter_reverse()
assert np.allclose(A.data, A2.data)
bc = dirichletbc(Function(V), np.arange(V.dofmap.index_map.size_local // 2, dtype=np.int32))
# Assemble vector
L = form(ufl.inner(w, v) * (dx(1) + dx(2) + dx(3)))
b = fem.assemble_vector(L)
fem.apply_lifting(b.array, [a], [[bc]])
b.scatter_reverse(la.InsertMode.add)
bc.set(b.array)
L2 = form(ufl.inner(w, v) * dx)
b2 = fem.assemble_vector(L2)
fem.apply_lifting(b2.array, [a], [[bc]])
b2.scatter_reverse(la.InsertMode.add)
bc.set(b2.array)
assert np.allclose(b.array, b2.array)
# Assemble scalar
L = form(w * (dx(1) + dx(2) + dx(3)))
s = assemble_scalar(L)
s = mesh.comm.allreduce(s, op=MPI.SUM)
assert s == pytest.approx(0.5, rel=1.0e-6)
L2 = form(w * dx)
s2 = assemble_scalar(L2)
s2 = mesh.comm.allreduce(s2, op=MPI.SUM)
assert s == pytest.approx(s2, rel=1.0e-6)
# Assemble scalar, using both dx("everywhere") and dx(i), i = 1, 2, 3
L = form(w * (dx(1) + dx(2) + dx(3) + dx))
s_sum = assemble_scalar(L)
s_sum = mesh.comm.allreduce(s_sum, op=MPI.SUM)
assert s_sum == pytest.approx(s + s2, rel=1.0e-6)
L2 = form(2 * w * dx)
s2 = assemble_scalar(L2)
s2 = mesh.comm.allreduce(s2, op=MPI.SUM)
assert s_sum == pytest.approx(s2, rel=1.0e-6)
@pytest.mark.parametrize("mode", [GhostMode.none, GhostMode.shared_facet])
def test_assembly_ds_domains(mode):
mesh = create_unit_square(MPI.COMM_WORLD, 10, 10, ghost_mode=mode)
V = functionspace(mesh, ("Lagrange", 1))
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
def bottom(x):
return np.isclose(x[1], 0.0)
def top(x):
return np.isclose(x[1], 1.0)
def left(x):
return np.isclose(x[0], 0.0)
def right(x):
return np.isclose(x[0], 1.0)
bottom_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, bottom)
bottom_vals = np.full(bottom_facets.shape, 1, np.int32)
top_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, top)
top_vals = np.full(top_facets.shape, 2, np.int32)
left_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, left)
left_vals = np.full(left_facets.shape, 3, np.int32)
right_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, right)
right_vals = np.full(right_facets.shape, 6, np.int32)
indices = np.hstack((bottom_facets, top_facets, left_facets, right_facets))
values = np.hstack((bottom_vals, top_vals, left_vals, right_vals))
indices, pos = np.unique(indices, return_index=True)
marker = meshtags(mesh, mesh.topology.dim - 1, indices, values[pos])
ds = ufl.Measure("ds", subdomain_data=marker, domain=mesh)
w = Function(V)
w.x.array[:] = 0.5
bc = dirichletbc(Function(V), np.arange(V.dofmap.index_map.size_local // 2, dtype=np.int32))
# Assemble matrix
a = form(w * ufl.inner(u, v) * (ds(1) + ds(2) + ds(3) + ds(6)))
A = fem.assemble_matrix(a)
A.scatter_reverse()
a2 = form(w * ufl.inner(u, v) * ds)
A2 = fem.assemble_matrix(a2)
A2.scatter_reverse()
assert np.allclose(A.data, A2.data)
# Assemble vector
L = form(ufl.inner(w, v) * (ds(1) + ds(2) + ds(3) + ds(6)))
b = fem.assemble_vector(L)
fem.apply_lifting(b.array, [a], [[bc]])
b.scatter_reverse(la.InsertMode.add)
bc.set(b.array)
L2 = form(ufl.inner(w, v) * ds)
b2 = fem.assemble_vector(L2)
fem.apply_lifting(b2.array, [a2], [[bc]])
b2.scatter_reverse(la.InsertMode.add)
bc.set(b2.array)
assert np.allclose(b.array, b2.array)
# Assemble scalar
L = form(w * (ds(1) + ds(2) + ds(3) + ds(6)))
s = assemble_scalar(L)
s = mesh.comm.allreduce(s, op=MPI.SUM)
L2 = form(w * ds)
s2 = assemble_scalar(L2)
s2 = mesh.comm.allreduce(s2, op=MPI.SUM)
assert s == pytest.approx(s2, 1.0e-6)
assert 2.0 == pytest.approx(s, 1.0e-6) # /NOSONAR
@parametrize_ghost_mode
def test_assembly_dS_domains(mode):
N = 10
mesh = create_unit_square(MPI.COMM_WORLD, N, N, ghost_mode=mode)
one = Constant(mesh, default_scalar_type(1))
val = assemble_scalar(form(one * ufl.dS))
val = mesh.comm.allreduce(val, op=MPI.SUM)
assert val == pytest.approx(2 * (N - 1) + N * np.sqrt(2), 1.0e-5)
@parametrize_ghost_mode
def test_additivity(mode):
mesh = create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
V = functionspace(mesh, ("Lagrange", 1))
f1 = Function(V)
f2 = Function(V)
f3 = Function(V)
f1.x.array[:] = 1.0
f2.x.array[:] = 2.0
f3.x.array[:] = 3.0
j1 = ufl.inner(f1, f1) * ufl.dx(mesh)
j2 = ufl.inner(f2, f2) * ufl.ds(mesh)
j3 = ufl.inner(ufl.avg(f3), ufl.avg(f3)) * ufl.dS(mesh)
# Assemble each scalar form separately
J1 = mesh.comm.allreduce(assemble_scalar(form(j1)), op=MPI.SUM)
J2 = mesh.comm.allreduce(assemble_scalar(form(j2)), op=MPI.SUM)
J3 = mesh.comm.allreduce(assemble_scalar(form(j3)), op=MPI.SUM)
# Sum forms and assemble the result
J12 = mesh.comm.allreduce(assemble_scalar(form(j1 + j2)), op=MPI.SUM)
J13 = mesh.comm.allreduce(assemble_scalar(form(j1 + j3)), op=MPI.SUM)
J23 = mesh.comm.allreduce(assemble_scalar(form(j2 + j3)), op=MPI.SUM)
J123 = mesh.comm.allreduce(assemble_scalar(form(j1 + j2 + j3)), op=MPI.SUM)
# Compare assembled values
assert (J1 + J2) == pytest.approx(J12)
assert (J1 + J3) == pytest.approx(J13)
assert (J2 + J3) == pytest.approx(J23)
assert (J1 + J2 + J3) == pytest.approx(J123)
def test_manual_integration_domains():
"""Test that specifying integration domains manually i.e.
by passing a list of cell indices or (cell, local facet) pairs to
form gives the same result as the usual approach of tagging"""
n = 4
msh = create_unit_square(MPI.COMM_WORLD, n, n)
V = functionspace(msh, ("Lagrange", 1))
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
# Create meshtags to mark some cells
tdim = msh.topology.dim
cell_map = msh.topology.index_map(tdim)
num_cells = cell_map.size_local + cell_map.num_ghosts
cell_indices = np.arange(0, num_cells)
cell_values = np.zeros_like(cell_indices, dtype=np.intc)
marked_cells = locate_entities(msh, tdim, lambda x: x[0] < 0.75)
cell_values[marked_cells] = 7
mt_cells = meshtags(msh, tdim, cell_indices, cell_values)
# Create meshtags to mark some exterior facets
msh.topology.create_entities(tdim - 1)
facet_map = msh.topology.index_map(tdim - 1)
num_facets = facet_map.size_local + facet_map.num_ghosts
facet_indices = np.arange(0, num_facets)
facet_values = np.zeros_like(facet_indices, dtype=np.intc)
marked_ext_facets = locate_entities_boundary(msh, tdim - 1, lambda x: np.isclose(x[0], 0.0))
marked_int_facets = locate_entities(msh, tdim - 1, lambda x: x[0] < 0.75)
# marked_int_facets will also contain facets on the boundary, so set
# these values first, followed by the values for marked_ext_facets
facet_values[marked_int_facets] = 3
facet_values[marked_ext_facets] = 6
mt_facets = meshtags(msh, tdim - 1, facet_indices, facet_values)
# Create measures
dx_mt = ufl.Measure("dx", subdomain_data=mt_cells, domain=msh)
ds_mt = ufl.Measure("ds", subdomain_data=mt_facets, domain=msh)
dS_mt = ufl.Measure("dS", subdomain_data=mt_facets, domain=msh)
g = Function(V)
g.interpolate(lambda x: x[1] ** 2)
def create_forms(dx, ds, dS):
a = form(
ufl.inner(g * u, v) * (dx(0) + dx(7) + ds(6))
+ ufl.inner(g * u("+"), v("+") + v("-")) * dS(3)
)
L = form(ufl.inner(g, v) * (dx(0) + dx(7) + ds(6)) + ufl.inner(g, v("+") + v("-")) * dS(3))
return (a, L)
# Create forms and assemble
a, L = create_forms(dx_mt, ds_mt, dS_mt)
A_mt = fem.assemble_matrix(a)
A_mt.scatter_reverse()
b_mt = fem.assemble_vector(L)
# Manually specify cells to integrate over (removing ghosts
# to give same result as above)
cell_domains = [
(domain_id, cell_indices[(cell_values == domain_id) & (cell_indices < cell_map.size_local)])
for domain_id in [0, 7]
]
# Manually specify exterior facets to integrate over as
# (cell, local facet) pairs
ext_facet_domain = []
msh.topology.create_connectivity(tdim, tdim - 1)
msh.topology.create_connectivity(tdim - 1, tdim)
c_to_f = msh.topology.connectivity(tdim, tdim - 1)
f_to_c = msh.topology.connectivity(tdim - 1, tdim)
for f in marked_ext_facets:
if f < facet_map.size_local:
c = f_to_c.links(f)[0]
local_f = np.where(c_to_f.links(c) == f)[0][0]
ext_facet_domain.append(c)
ext_facet_domain.append(local_f)
ext_facet_domains = [(6, ext_facet_domain)]
# Manually specify interior facets to integrate over
int_facet_domain = []
for f in marked_int_facets:
if f >= facet_map.size_local or len(f_to_c.links(f)) != 2:
continue
c_0, c_1 = f_to_c.links(f)[0], f_to_c.links(f)[1]
local_f_0 = np.where(c_to_f.links(c_0) == f)[0][0]
local_f_1 = np.where(c_to_f.links(c_1) == f)[0][0]
int_facet_domain.append(c_0)
int_facet_domain.append(local_f_0)
int_facet_domain.append(c_1)
int_facet_domain.append(local_f_1)
int_facet_domains = [(3, int_facet_domain)]
# Create measures
dx_manual = ufl.Measure("dx", subdomain_data=cell_domains, domain=msh)
ds_manual = ufl.Measure("ds", subdomain_data=ext_facet_domains, domain=msh)
dS_manual = ufl.Measure("dS", subdomain_data=int_facet_domains, domain=msh)
# Assemble forms and check
a, L = create_forms(dx_manual, ds_manual, dS_manual)
A = fem.assemble_matrix(a)
A.scatter_reverse()
b = fem.assemble_vector(L)
assert np.allclose(A.data, A_mt.data)
assert np.allclose(b.array, b_mt.array)
|