1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
# Copyright (C) 2020-2021 Joseph P. Dean, Massimiliano Leoni and Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
from mpi4py import MPI
import numpy as np
import pytest
import ufl
from basix.ufl import element, mixed_element
from dolfinx import default_real_type, default_scalar_type, la
from dolfinx.fem import (
Constant,
Function,
apply_lifting,
assemble_matrix,
assemble_vector,
create_matrix,
create_vector,
dirichletbc,
form,
functionspace,
locate_dofs_geometrical,
locate_dofs_topological,
)
from dolfinx.mesh import CellType, create_unit_cube, create_unit_square, exterior_facet_indices
from ufl import dx, inner
def test_locate_dofs_geometrical():
"""Test that locate_dofs_geometrical, when passed two function
spaces, returns the correct degrees of freedom in each space"""
mesh = create_unit_square(MPI.COMM_WORLD, 4, 8)
p0, p1 = 1, 2
P0 = element("Lagrange", mesh.basix_cell(), p0, dtype=default_real_type)
P1 = element("Lagrange", mesh.basix_cell(), p1, dtype=default_real_type)
W = functionspace(mesh, mixed_element([P0, P1]))
V = W.sub(0).collapse()[0]
with pytest.raises(RuntimeError):
locate_dofs_geometrical(W, lambda x: np.isclose(x.T, [0, 0, 0]).all(axis=1))
dofs = locate_dofs_geometrical((W.sub(0), V), lambda x: np.isclose(x.T, [0, 0, 0]).all(axis=1))
# Collect dofs (global indices) from all processes
dofs0_global = W.sub(0).dofmap.index_map.local_to_global(dofs[0])
dofs1_global = V.dofmap.index_map.local_to_global(dofs[1])
all_dofs0 = set(np.concatenate(MPI.COMM_WORLD.allgather(dofs0_global)))
all_dofs1 = set(np.concatenate(MPI.COMM_WORLD.allgather(dofs1_global)))
# Check only one dof pair is found globally
assert len(all_dofs0) == 1
assert len(all_dofs1) == 1
# On process with the dof pair
if len(dofs) == 1:
# Check correct dof returned in W
coords_W = W.tabulate_dof_coordinates()
assert np.isclose(coords_W[dofs[0][0]], [0, 0, 0]).all()
# Check correct dof returned in V
coords_V = V.tabulate_dof_coordinates()
assert np.isclose(coords_V[dofs[0][1]], [0, 0, 0]).all()
def test_overlapping_bcs():
"""Test that, when boundaries condition overlap, the last provided
boundary condition is applied"""
n = 23
mesh = create_unit_square(MPI.COMM_WORLD, n, n)
V = functionspace(mesh, ("Lagrange", 1))
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
a = form(inner(u, v) * dx)
L = form(inner(1, v) * dx)
dofs_left = locate_dofs_geometrical(V, lambda x: x[0] < 1.0 / (2.0 * n))
dofs_top = locate_dofs_geometrical(V, lambda x: x[1] > 1.0 - 1.0 / (2.0 * n))
dof_corner = np.array(list(set(dofs_left).intersection(set(dofs_top))), dtype=np.int64)
# Check only one dof pair is found globally
assert len(set(np.concatenate(MPI.COMM_WORLD.allgather(dof_corner)))) == 1
bcs = [
dirichletbc(default_scalar_type(0), dofs_left, V),
dirichletbc(default_scalar_type(123.456), dofs_top, V),
]
A, b = create_matrix(a), create_vector(L)
assemble_matrix(A, a, bcs=bcs)
A.scatter_reverse()
# Check the diagonal (only on the rank that owns the row)
As = A.to_scipy(ghosted=True)
d = As.diagonal()
if len(dof_corner) > 0 and dof_corner[0] < V.dofmap.index_map.size_local:
assert d[dof_corner[0]] == 1.0 # /NOSONAR
b.array[:] = 0
assemble_vector(b.array, L)
apply_lifting(b.array, [a], [bcs])
b.scatter_reverse(la.InsertMode.add)
for bc in bcs:
bc.set(b.array)
b.scatter_forward()
if len(dof_corner) > 0:
assert b.array[dof_corner[0]] == default_real_type(123.456)
def test_constant_bc_constructions():
"""Test construction from constant values"""
msh = create_unit_square(MPI.COMM_WORLD, 4, 4, dtype=default_real_type)
gdim = msh.geometry.dim
V0 = functionspace(msh, ("Lagrange", 1))
V1 = functionspace(msh, ("Lagrange", 1, (gdim,)))
V2 = functionspace(msh, ("Lagrange", 1, (gdim, gdim)))
tdim = msh.topology.dim
msh.topology.create_connectivity(tdim - 1, tdim)
boundary_facets = exterior_facet_indices(msh.topology)
boundary_dofs0 = locate_dofs_topological(V0, tdim - 1, boundary_facets)
boundary_dofs1 = locate_dofs_topological(V1, tdim - 1, boundary_facets)
boundary_dofs2 = locate_dofs_topological(V2, tdim - 1, boundary_facets)
if default_real_type == np.float64:
dtype = np.complex128
else:
dtype = np.complex64
bc0 = dirichletbc(dtype(1.0 + 2.2j), boundary_dofs0, V0)
assert bc0.g.value.dtype == dtype
assert bc0.g.value.shape == tuple()
assert bc0.g.value == dtype(1.0 + 2.2j)
bc1 = dirichletbc(np.array([1.0 + 2.2j, 3.0 + 2.2j], dtype=dtype), boundary_dofs1, V1)
assert bc1.g.value.dtype == dtype
assert bc1.g.value.shape == (tdim,)
assert (bc1.g.value == [dtype(1.0 + 2.2j), dtype(3.0 + 2.2j)]).all()
bc2 = dirichletbc(
np.array([[1.0, 3.0], [3.0, -2.0]], dtype=default_real_type), boundary_dofs2, V2
)
assert bc2.g.value.dtype == default_real_type
assert bc2.g.value.shape == (tdim, tdim)
assert (bc2.g.value == [[1.0, 3.0], [3.0, -2.0]]).all()
@pytest.mark.parametrize(
"mesh_factory",
[
(create_unit_square, (MPI.COMM_WORLD, 4, 4)),
(create_unit_square, (MPI.COMM_WORLD, 8, 8, CellType.quadrilateral)),
(create_unit_cube, (MPI.COMM_WORLD, 3, 3, 3)),
(create_unit_cube, (MPI.COMM_WORLD, 3, 3, 3, CellType.hexahedron)),
],
)
def test_constant_bc(mesh_factory):
"""Test that setting a dirichletbc with a constant yields the same
result as setting it with a function"""
func, args = mesh_factory
mesh = func(*args)
V = functionspace(mesh, ("Lagrange", 1))
c = default_scalar_type(2)
tdim = mesh.topology.dim
mesh.topology.create_connectivity(tdim - 1, tdim)
boundary_facets = exterior_facet_indices(mesh.topology)
boundary_dofs = locate_dofs_topological(V, tdim - 1, boundary_facets)
u_bc = Function(V)
u_bc.x.array[:] = c
bc_f = dirichletbc(u_bc, boundary_dofs)
bc_c = dirichletbc(c, boundary_dofs, V)
u_f = Function(V)
bc_f.set(u_f.x.array)
u_c = Function(V)
bc_c.set(u_c.x.array)
assert np.allclose(u_f.x.array, u_c.x.array)
@pytest.mark.parametrize(
"mesh_factory",
[
(create_unit_square, (MPI.COMM_WORLD, 4, 4)),
(create_unit_square, (MPI.COMM_WORLD, 8, 8, CellType.quadrilateral)),
(create_unit_cube, (MPI.COMM_WORLD, 3, 3, 3)),
(create_unit_cube, (MPI.COMM_WORLD, 3, 3, 3, CellType.hexahedron)),
],
)
def test_vector_constant_bc(mesh_factory):
"""Test that setting a dirichletbc with a vector valued constant
yields the same result as setting it with a function"""
func, args = mesh_factory
mesh = func(*args)
tdim = mesh.topology.dim
gdim = mesh.geometry.dim
V = functionspace(mesh, ("Lagrange", 1, (gdim,)))
assert V.num_sub_spaces == gdim
c = np.arange(1, mesh.geometry.dim + 1, dtype=default_scalar_type)
mesh.topology.create_connectivity(tdim - 1, tdim)
boundary_facets = exterior_facet_indices(mesh.topology)
# Set using sub-functions
Vs = [V.sub(i).collapse()[0] for i in range(V.num_sub_spaces)]
boundary_dofs = [
locate_dofs_topological((V.sub(i), Vs[i]), tdim - 1, boundary_facets)
for i in range(len(Vs))
]
u_bcs = [Function(Vs[i]) for i in range(len(Vs))]
bcs_f = []
for i, u in enumerate(u_bcs):
u_bcs[i].x.array[:] = c[i]
bcs_f.append(dirichletbc(u_bcs[i], boundary_dofs[i], V.sub(i)))
u_f = Function(V)
for bc in bcs_f:
bc.set(u_f.x.array)
# Set using constant
boundary_dofs = locate_dofs_topological(V, tdim - 1, boundary_facets)
bc_c = dirichletbc(c, boundary_dofs, V)
u_c = Function(V)
u_c.x.array[:] = 0.0
bc_c.set(u_c.x.array)
assert np.allclose(u_f.x.array, u_c.x.array)
@pytest.mark.parametrize(
"mesh_factory",
[
(create_unit_square, (MPI.COMM_WORLD, 4, 4)),
(create_unit_square, (MPI.COMM_WORLD, 8, 8, CellType.quadrilateral)),
(create_unit_cube, (MPI.COMM_WORLD, 3, 3, 3)),
(create_unit_cube, (MPI.COMM_WORLD, 3, 3, 3, CellType.hexahedron)),
],
)
def test_sub_constant_bc(mesh_factory):
"""Test that setting a dirichletbc with on a component of a vector
valued function yields the same result as setting it with a
function"""
func, args = mesh_factory
mesh = func(*args)
gdim = mesh.geometry.dim
V = functionspace(mesh, ("Lagrange", 1, (gdim,)))
c = Constant(mesh, default_scalar_type(3.14))
tdim = mesh.topology.dim
mesh.topology.create_connectivity(tdim - 1, tdim)
boundary_facets = exterior_facet_indices(mesh.topology)
for i in range(V.num_sub_spaces):
Vi = V.sub(i).collapse()[0]
u_bci = Function(Vi)
u_bci.x.array[:] = default_scalar_type(c.value)
boundary_dofsi = locate_dofs_topological((V.sub(i), Vi), tdim - 1, boundary_facets)
bc_fi = dirichletbc(u_bci, boundary_dofsi, V.sub(i))
boundary_dofs = locate_dofs_topological(V.sub(i), tdim - 1, boundary_facets)
bc_c = dirichletbc(c, boundary_dofs, V.sub(i))
u_f = Function(V)
bc_fi.set(u_f.x.array)
u_c = Function(V)
bc_c.set(u_c.x.array)
assert np.allclose(u_f.x.array, u_c.x.array)
@pytest.mark.parametrize(
"mesh_factory",
[
(create_unit_square, (MPI.COMM_WORLD, 4, 4)),
(create_unit_square, (MPI.COMM_WORLD, 8, 8, CellType.quadrilateral)),
(create_unit_cube, (MPI.COMM_WORLD, 3, 3, 3)),
(create_unit_cube, (MPI.COMM_WORLD, 3, 3, 3, CellType.hexahedron)),
],
)
def test_mixed_constant_bc(mesh_factory):
"""Test that setting a dirichletbc with on a component of a mixed
function yields the same result as setting it with a function"""
func, args = mesh_factory
mesh = func(*args)
tdim = mesh.topology.dim
mesh.topology.create_connectivity(tdim - 1, tdim)
boundary_facets = exterior_facet_indices(mesh.topology)
TH = mixed_element(
[
element("Lagrange", mesh.basix_cell(), 1, dtype=default_real_type),
element("Lagrange", mesh.basix_cell(), 2, dtype=default_real_type),
]
)
W = functionspace(mesh, TH)
u = Function(W)
bc_val = default_scalar_type(3)
c = Constant(mesh, bc_val)
u_func = Function(W)
for i in range(2):
u_func.x.array[:] = 0
u.x.array[:] = 0
# Apply BC to scalar component of a mixed space using a Constant
dofs = locate_dofs_topological(W.sub(i), tdim - 1, boundary_facets)
bc = dirichletbc(c, dofs, W.sub(i))
bc.set(u.x.array)
# Apply BC to scalar component of a mixed space using a Function
ubc = u.sub(i).collapse()
ubc.interpolate(lambda x: np.full(x.shape[1], bc_val))
dofs_both = locate_dofs_topological(
(W.sub(i), ubc.function_space), tdim - 1, boundary_facets
)
bc_func = dirichletbc(ubc, dofs_both, W.sub(i))
bc_func.set(u_func.x.array)
# Check that both approaches yield the same vector
assert np.allclose(u.x.array, u_func.x.array)
def test_mixed_blocked_constant():
"""Check that mixed space with blocked component cannot have
Dirichlet BC based on a vector valued Constant."""
mesh = create_unit_square(MPI.COMM_WORLD, 4, 4)
tdim = mesh.topology.dim
mesh.topology.create_connectivity(tdim - 1, tdim)
boundary_facets = exterior_facet_indices(mesh.topology)
TH = mixed_element(
[
element("Lagrange", mesh.basix_cell(), 1, dtype=default_real_type),
element(
"Lagrange",
mesh.basix_cell(),
2,
shape=(mesh.geometry.dim,),
dtype=default_real_type,
),
]
)
W = functionspace(mesh, TH)
u = Function(W)
c0 = default_scalar_type(3)
dofs0 = locate_dofs_topological(W.sub(0), tdim - 1, boundary_facets)
bc0 = dirichletbc(c0, dofs0, W.sub(0))
bc0.set(u.x.array)
# Apply BC to scalar component of a mixed space using a Function
ubc = u.sub(0).collapse()
ubc.interpolate(lambda x: np.full(x.shape[1], c0))
dofs_both = locate_dofs_topological((W.sub(0), ubc.function_space), tdim - 1, boundary_facets)
bc_func = dirichletbc(ubc, dofs_both, W.sub(0))
u_func = Function(W)
bc_func.set(u_func.x.array)
assert np.allclose(u.x.array, u_func.x.array)
# Check that vector space throws error
c1 = default_scalar_type((5, 7))
with pytest.raises(RuntimeError):
dofs1 = locate_dofs_topological(W.sub(1), tdim - 1, boundary_facets)
dirichletbc(c1, dofs1, W.sub(1))
|