1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
# Copyright (C) 2019-2024 Garth N. Wells
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Tests for custom Python assemblers."""
import importlib
import math
import os
import pathlib
import time
from mpi4py import MPI
try:
from petsc4py import PETSc
from dolfinx.fem.petsc import assemble_matrix
except ImportError:
pass
import numpy as np
import pytest
import dolfinx
import dolfinx.pkgconfig
import ufl
from dolfinx.fem import Function, form, functionspace
from dolfinx.mesh import create_unit_square
from dolfinx.utils import cffi_utils as petsc_cffi
from dolfinx.utils import ctypes_utils as petsc_ctypes
from dolfinx.utils import numba_utils as petsc_numba
cffi = pytest.importorskip("cffi")
cffi_support = pytest.importorskip("numba.core.typing.cffi_utils")
numba = pytest.importorskip("numba")
# Get PETSc MatSetValuesLocal interfaces
try:
MatSetValuesLocal = petsc_numba.MatSetValuesLocal
MatSetValuesLocal_ctypes = petsc_ctypes.MatSetValuesLocal
MatSetValuesLocal_abi = petsc_cffi.MatSetValuesLocal
except AttributeError:
MatSetValuesLocal_abi = None
@numba.njit
def set_vals_numba(A, m, rows, n, cols, data, mode):
MatSetValuesLocal(A, 3, rows.ctypes, 3, cols.ctypes, data.ctypes, mode)
@numba.njit
def set_vals_cffi(A, m, rows, n, cols, data, mode):
MatSetValuesLocal_abi(
A, m, ffi.from_buffer(rows), n, ffi.from_buffer(cols), ffi.from_buffer(data), mode
)
@numba.njit
def set_vals_ctypes(A, m, rows, n, cols, data, mode):
MatSetValuesLocal_ctypes(A, m, rows.ctypes, n, cols.ctypes, data.ctypes, mode)
ffi = cffi.FFI()
def get_matsetvalues_cffi_api():
"""Make MatSetValuesLocal from PETSc available via cffi in API mode.
This function is not (yet) in the DOLFINx module because it is complicated
by needing to compile code.
"""
has_petsc_complex = np.issubdtype(PETSc.ScalarType, np.complexfloating)
dolfinx_pc_name = "dolfinx_complex" if has_petsc_complex else "dolfinx_real"
if dolfinx.pkgconfig.exists(dolfinx_pc_name):
dolfinx_pc = dolfinx.pkgconfig.parse(dolfinx_pc_name)
else:
raise RuntimeError("Could not find DOLFINx pkg-config file")
import petsc4py.lib
from petsc4py import get_config as PETSc_get_config
cffi_support.register_type(ffi.typeof("float _Complex"), numba.types.complex64)
cffi_support.register_type(ffi.typeof("double _Complex"), numba.types.complex128)
petsc_dir = PETSc_get_config()["PETSC_DIR"]
petsc_arch = petsc4py.lib.getPathArchPETSc()[1]
worker = os.getenv("PYTEST_XDIST_WORKER", None)
module_name = f"_petsc_cffi_{worker}"
if MPI.COMM_WORLD.Get_rank() == 0:
ffibuilder = cffi.FFI()
ffibuilder.cdef(
"""typedef int... PetscInt;
typedef ... PetscScalar;
typedef int... InsertMode;
int MatSetValuesLocal(void* mat, PetscInt nrow, const PetscInt* irow,
PetscInt ncol, const PetscInt* icol,
const PetscScalar* y, InsertMode addv);"""
)
ffibuilder.set_source(
module_name,
'#include "petscmat.h"',
libraries=["petsc"],
include_dirs=[
os.path.join(petsc_dir, petsc_arch, "include"),
os.path.join(petsc_dir, "include"),
]
+ dolfinx_pc["include_dirs"],
library_dirs=[os.path.join(petsc_dir, petsc_arch, "lib")],
extra_compile_args=[],
)
# Build module in same directory as test file
path = pathlib.Path(__file__).parent.absolute()
ffibuilder.compile(tmpdir=path, verbose=True)
MPI.COMM_WORLD.Barrier()
spec = importlib.util.find_spec(module_name)
if spec is None:
raise ImportError("Failed to find CFFI generated module")
module = importlib.util.module_from_spec(spec)
cffi_support.register_module(module)
cffi_support.register_type(module.ffi.typeof("PetscScalar"), petsc_numba._scalar)
return module.lib.MatSetValuesLocal
# See https://github.com/numba/numba/issues/4036 for why we need 'sink'
@numba.njit
def sink(*args):
pass
@numba.njit(fastmath=True)
def area(x0, x1, x2) -> float:
"""Compute the area of a triangle embedded in 2D from the three vertices"""
a = (x1[0] - x2[0]) ** 2 + (x1[1] - x2[1]) ** 2
b = (x0[0] - x2[0]) ** 2 + (x0[1] - x2[1]) ** 2
c = (x0[0] - x1[0]) ** 2 + (x0[1] - x1[1]) ** 2
return math.sqrt(2 * (a * b + a * c + b * c) - (a**2 + b**2 + c**2)) / 4.0
@numba.njit(fastmath=True)
def assemble_vector(b, mesh, dofmap, num_cells):
"""Assemble simple linear form over a mesh into the array b"""
v, x = mesh
q0, q1 = 1 / 3.0, 1 / 3.0
for cell in range(num_cells):
# FIXME: This assumes a particular geometry dof layout
A = area(x[v[cell, 0]], x[v[cell, 1]], x[v[cell, 2]])
b[dofmap[cell, 0]] += A * (1.0 - q0 - q1)
b[dofmap[cell, 1]] += A * q0
b[dofmap[cell, 2]] += A * q1
@numba.njit(parallel=(not numba.core.config.IS_32BITS), fastmath=True)
def assemble_vector_parallel(b, v, x, dofmap_t_data, dofmap_t_offsets, num_cells):
"""Assemble simple linear form over a mesh into the array b using a parallel loop"""
q0 = 1 / 3.0
q1 = 1 / 3.0
b_unassembled = np.empty((num_cells, 3), dtype=b.dtype)
for cell in numba.prange(num_cells):
# FIXME: This assumes a particular geometry dof layout
A = area(x[v[cell, 0]], x[v[cell, 1]], x[v[cell, 2]])
b_unassembled[cell, 0] = A * (1.0 - q0 - q1)
b_unassembled[cell, 1] = A * q0
b_unassembled[cell, 2] = A * q1
# Accumulate values in RHS
_b_unassembled = b_unassembled.reshape(num_cells * 3)
for index in numba.prange(dofmap_t_offsets.shape[0] - 1):
for p in range(dofmap_t_offsets[index], dofmap_t_offsets[index + 1]):
b[index] += _b_unassembled[dofmap_t_data[p]]
@numba.njit(fastmath=True)
def assemble_vector_ufc(b, kernel, mesh, dofmap, num_cells, dtype):
"""Assemble provided FFCx/UFC kernel over a mesh into the array b"""
v, x = mesh
entity_local_index = np.array([0], dtype=np.intc)
perm = np.array([0], dtype=np.uint8)
geometry = np.zeros((3, 3), dtype=x.dtype)
coeffs = np.zeros(1, dtype=dtype)
constants = np.zeros(1, dtype=dtype)
b_local = np.zeros(3, dtype=dtype)
for cell in range(num_cells):
# FIXME: This assumes a particular geometry dof layout
for j in range(3):
geometry[j] = x[v[cell, j], :]
b_local.fill(0.0)
kernel(
ffi.from_buffer(b_local),
ffi.from_buffer(coeffs),
ffi.from_buffer(constants),
ffi.from_buffer(geometry),
ffi.from_buffer(entity_local_index),
ffi.from_buffer(perm),
)
for j in range(3):
b[dofmap[cell, j]] += b_local[j]
@numba.njit(fastmath=True)
def assemble_petsc_matrix(A, mesh, dofmap, num_cells, set_vals, mode):
"""Assemble P1 mass matrix over a mesh into the PETSc matrix A"""
# Mesh data
v, x = mesh
# Quadrature points and weights
q = np.array([[0.5, 0.0], [0.5, 0.5], [0.0, 0.5]], dtype=np.double)
weights = np.full(3, 1.0 / 3.0, dtype=np.double)
# Loop over cells
N = np.empty(3, dtype=np.double)
A_local = np.empty((3, 3), dtype=PETSc.ScalarType)
for cell in range(num_cells):
cell_area = area(x[v[cell, 0]], x[v[cell, 1]], x[v[cell, 2]])
# Loop over quadrature points
A_local[:] = 0.0
for j in range(q.shape[0]):
N[0], N[1], N[2] = 1.0 - q[j, 0] - q[j, 1], q[j, 0], q[j, 1]
for row in range(3):
for col in range(3):
A_local[row, col] += weights[j] * cell_area * N[row] * N[col]
# Add to global tensor
pos = dofmap[cell, :]
set_vals(A, 3, pos, 3, pos, A_local, mode)
sink(A_local, dofmap)
@pytest.mark.parametrize(
"dtype",
[
np.float32,
np.float64,
pytest.param(np.complex64, marks=pytest.mark.xfail_win32_complex),
pytest.param(np.complex128, marks=pytest.mark.xfail_win32_complex),
],
)
def test_custom_mesh_loop_rank1(dtype):
mesh = create_unit_square(MPI.COMM_WORLD, 64, 64, dtype=dtype(0).real.dtype)
V = functionspace(mesh, ("Lagrange", 1))
# Unpack mesh and dofmap data
num_owned_cells = mesh.topology.index_map(mesh.topology.dim).size_local
x_dofs = mesh.geometry.dofmap
x = mesh.geometry.x
dofmap = V.dofmap.list
# Assemble with pure Numba function (two passes, first will include
# JIT overhead)
b0 = Function(V, dtype=dtype)
for i in range(2):
b = b0.x.array
b[:] = 0.0
start = time.time()
assemble_vector(b, (x_dofs, x), dofmap, num_owned_cells)
end = time.time()
print(f"Time (numba, pass {i}): {end - start}")
b0.x.scatter_reverse(dolfinx.la.InsertMode.add)
b0sum = np.sum(b0.x.array[: b0.x.index_map.size_local * b0.x.block_size])
assert mesh.comm.allreduce(b0sum, op=MPI.SUM) == pytest.approx(1.0)
# NOTE: Parallel (threaded) Numba can cause problems with MPI
# Assemble with pure Numba function using parallel loop (two passes,
# first will include JIT overhead)
# from dolfinx.fem import transpose_dofmap
# dofmap_t = transpose_dofmap(V.dofmap.list, num_owned_cells)
# btmp = Function(V)
# for i in range(2):
# b = btmp.x.array
# b[:] = 0.0
# start = time.time()
# assemble_vector_parallel(b, x_dofs, x, dofmap_t.array, dofmap_t.offsets, num_owned_cells)
# end = time.time()
# print("Time (numba parallel, pass {}): {}".format(i, end - start))
# btmp.x.petsc_vec.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
# assert (btmp.x.petsc_vec - b0.x.petsc_vec).norm() == pytest.approx(0.0)
# Test against generated code and general assembler
v = ufl.TestFunction(V)
L = ufl.inner(1.0, v) * ufl.dx
Lf = form(L, dtype=dtype)
start = time.time()
b1 = dolfinx.fem.assemble_vector(Lf)
end = time.time()
print("Time (C++, pass 0):", end - start)
b1.array[:] = 0
start = time.time()
dolfinx.fem.assemble_vector(b1.array, Lf)
end = time.time()
print("Time (C++, pass 1):", end - start)
b1.scatter_reverse(dolfinx.la.InsertMode.add)
assert np.linalg.norm(b1.array - b0.x.array) == pytest.approx(0.0, abs=1.0e-8)
# Assemble using generated tabulate_tensor kernel and Numba
# assembler
b3 = Function(V, dtype=dtype)
ufcx_form, module, code = dolfinx.jit.ffcx_jit(
mesh.comm, L, form_compiler_options={"scalar_type": dtype}
)
# Get the one and only kernel
kernel = getattr(ufcx_form.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}")
for i in range(2):
b = b3.x.array
b[:] = 0.0
start = time.time()
assemble_vector_ufc(b, kernel, (x_dofs, x), dofmap, num_owned_cells, dtype)
end = time.time()
print(f"Time (numba/cffi, pass {i}): {end - start}")
b3.x.scatter_reverse(dolfinx.la.InsertMode.add)
assert np.linalg.norm(b3.x.array - b0.x.array) == pytest.approx(0.0, abs=1e-8)
@pytest.mark.petsc4py
@pytest.mark.parametrize(
"set_vals,backend",
[
(set_vals_numba, "numba"),
(set_vals_ctypes, "ctypes"),
(set_vals_cffi, "cffi_abi"),
],
)
def test_custom_mesh_loop_petsc_rank2(set_vals, backend):
"""Test numba assembler for a bilinear form."""
mesh = create_unit_square(MPI.COMM_WORLD, 64, 64)
V = functionspace(mesh, ("Lagrange", 1))
# Test against generated code and general assembler
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
a = form(ufl.inner(u, v) * ufl.dx)
A0 = assemble_matrix(a)
A0.assemble()
A0.zeroEntries()
start = time.time()
assemble_matrix(A0, a)
end = time.time()
print("Time (C++, pass 2):", end - start)
A0.assemble()
# Unpack mesh and dofmap data
num_owned_cells = mesh.topology.index_map(mesh.topology.dim).size_local
x_dofs = mesh.geometry.dofmap
x = mesh.geometry.x
dofmap = V.dofmap.list.astype(np.dtype(PETSc.IntType))
A1 = A0.copy()
for i in range(2):
A1.zeroEntries()
start = time.time()
assemble_petsc_matrix(
A1.handle, (x_dofs, x), dofmap, num_owned_cells, set_vals, PETSc.InsertMode.ADD_VALUES
)
end = time.time()
print(f"Time (Numba/{backend}, pass {i}): {end - start}")
A1.assemble()
assert (A1 - A0).norm() == pytest.approx(0.0, abs=1.0e-9)
A0.destroy()
A1.destroy()
|