1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
# Copyright (C) 2015-2022 Garth N. Wells, Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Unit tests for the DiscreteOperator class"""
from mpi4py import MPI
import numpy as np
import pytest
import scipy
import dolfinx.la
import ufl
from basix.ufl import element
from dolfinx.fem import Expression, Function, discrete_gradient, functionspace
from dolfinx.mesh import CellType, GhostMode, create_unit_cube, create_unit_square
@pytest.mark.parametrize(
"mesh",
[
create_unit_square(MPI.COMM_WORLD, 11, 6, ghost_mode=GhostMode.none, dtype=np.float32),
create_unit_square(
MPI.COMM_WORLD, 11, 6, ghost_mode=GhostMode.shared_facet, dtype=np.float64
),
create_unit_cube(MPI.COMM_WORLD, 4, 3, 7, ghost_mode=GhostMode.none, dtype=np.float64),
create_unit_cube(
MPI.COMM_WORLD, 4, 3, 7, ghost_mode=GhostMode.shared_facet, dtype=np.float32
),
],
)
def test_gradient(mesh):
"""Test discrete gradient computation for lowest order elements."""
V = functionspace(mesh, ("Lagrange", 1))
W = functionspace(mesh, ("Nedelec 1st kind H(curl)", 1))
G = discrete_gradient(V, W)
# N.B. do not scatter_rev G - doing so would transfer rows to other processes
# where they will be summed to give an incorrect matrix
num_edges = mesh.topology.index_map(1).size_global
m, n = G.index_map(0).size_global, G.index_map(1).size_global
assert m == num_edges
assert n == mesh.topology.index_map(0).size_global
assert np.isclose(G.squared_norm(), 2.0 * num_edges)
@pytest.mark.parametrize("p", range(1, 4))
@pytest.mark.parametrize("q", range(1, 4))
@pytest.mark.parametrize(
"cell_type",
[
(
create_unit_square(
MPI.COMM_WORLD,
11,
6,
ghost_mode=GhostMode.none,
cell_type=CellType.triangle,
dtype=np.float32,
),
"Lagrange",
"Nedelec 1st kind H(curl)",
),
(
create_unit_square(
MPI.COMM_WORLD,
11,
6,
ghost_mode=GhostMode.none,
cell_type=CellType.triangle,
dtype=np.float64,
),
"Lagrange",
"Nedelec 1st kind H(curl)",
),
(
create_unit_square(
MPI.COMM_WORLD,
11,
6,
ghost_mode=GhostMode.none,
cell_type=CellType.quadrilateral,
dtype=np.float32,
),
"Q",
"RTCE",
),
(
create_unit_square(
MPI.COMM_WORLD,
11,
6,
ghost_mode=GhostMode.none,
cell_type=CellType.quadrilateral,
dtype=np.float64,
),
"Q",
"RTCE",
),
(
create_unit_cube(
MPI.COMM_WORLD,
3,
3,
2,
ghost_mode=GhostMode.none,
cell_type=CellType.tetrahedron,
dtype=np.float32,
),
"Lagrange",
"Nedelec 1st kind H(curl)",
),
(
create_unit_cube(
MPI.COMM_WORLD,
3,
3,
2,
ghost_mode=GhostMode.none,
cell_type=CellType.tetrahedron,
dtype=np.float64,
),
"Lagrange",
"Nedelec 1st kind H(curl)",
),
(
create_unit_cube(
MPI.COMM_WORLD,
3,
3,
2,
ghost_mode=GhostMode.none,
cell_type=CellType.hexahedron,
dtype=np.float32,
),
"Q",
"NCE",
),
(
create_unit_cube(
MPI.COMM_WORLD,
3,
2,
2,
ghost_mode=GhostMode.none,
cell_type=CellType.hexahedron,
dtype=np.float64,
),
"Q",
"NCE",
),
],
)
def test_gradient_interpolation(cell_type, p, q):
"""Test discrete gradient computation with verification using Expression."""
mesh, family0, family1 = cell_type
dtype = mesh.geometry.x.dtype
V = functionspace(mesh, (family0, p))
W = functionspace(mesh, (family1, q))
G = discrete_gradient(V, W)
# N.B. do not scatter_rev G - doing so would transfer rows to other
# processes where they will be summed to give an incorrect matrix
# Vector for 'u' needs additional ghosts defined in columns of G
uvec = dolfinx.la.vector(G.index_map(1), dtype=dtype)
u = Function(V, uvec, dtype=dtype)
u.interpolate(lambda x: 2 * x[0] ** p + 3 * x[1] ** p)
grad_u = Expression(ufl.grad(u), W.element.interpolation_points(), dtype=dtype)
w_expr = Function(W, dtype=dtype)
w_expr.interpolate(grad_u)
# Compute global matrix vector product
w = Function(W, dtype=dtype)
# Get the local part of G (no ghost rows)
nrlocal = G.index_map(0).size_local
nnzlocal = G.indptr[nrlocal]
Glocal = scipy.sparse.csr_matrix(
(G.data[:nnzlocal], G.indices[:nnzlocal], G.indptr[: nrlocal + 1])
)
# MatVec
w.x.array[:nrlocal] = Glocal @ u.x.array
w.x.scatter_forward()
atol = 1000 * np.finfo(dtype).resolution
assert np.allclose(w_expr.x.array, w.x.array, atol=atol)
@pytest.mark.parametrize("p", range(1, 4))
@pytest.mark.parametrize("q", range(1, 4))
@pytest.mark.parametrize("from_lagrange", [True, False])
@pytest.mark.parametrize(
"cell_type",
[CellType.quadrilateral, CellType.triangle, CellType.tetrahedron, CellType.hexahedron],
)
def test_interpolation_matrix(cell_type, p, q, from_lagrange):
"""Test that discrete interpolation matrix yields the same result as interpolation."""
from dolfinx import default_real_type
from dolfinx.fem import interpolation_matrix
comm = MPI.COMM_WORLD
if cell_type == CellType.triangle:
mesh = create_unit_square(comm, 7, 5, ghost_mode=GhostMode.none, cell_type=cell_type)
lagrange = "Lagrange" if from_lagrange else "DG"
nedelec = "Nedelec 1st kind H(curl)"
elif cell_type == CellType.quadrilateral:
mesh = create_unit_square(comm, 11, 6, ghost_mode=GhostMode.none, cell_type=cell_type)
lagrange = "Q" if from_lagrange else "DQ"
nedelec = "RTCE"
elif cell_type == CellType.hexahedron:
mesh = create_unit_cube(comm, 3, 2, 1, ghost_mode=GhostMode.none, cell_type=cell_type)
lagrange = "Q" if from_lagrange else "DQ"
nedelec = "NCE"
elif cell_type == CellType.tetrahedron:
mesh = create_unit_cube(comm, 3, 2, 2, ghost_mode=GhostMode.none, cell_type=cell_type)
lagrange = "Lagrange" if from_lagrange else "DG"
nedelec = "Nedelec 1st kind H(curl)"
v_el = element(
lagrange, mesh.basix_cell(), p, shape=(mesh.geometry.dim,), dtype=default_real_type
)
s_el = element(nedelec, mesh.basix_cell(), q, dtype=default_real_type)
if from_lagrange:
el0 = v_el
el1 = s_el
else:
el0 = s_el
el1 = v_el
V = functionspace(mesh, el0)
W = functionspace(mesh, el1)
G = interpolation_matrix(V, W).to_scipy()
u = Function(V)
def f(x):
if mesh.geometry.dim == 2:
return (x[1] ** p, x[0] ** p)
else:
return (x[0] ** p, x[2] ** p, x[1] ** p)
u.interpolate(f)
w_vec = Function(W)
w_vec.interpolate(u)
# Compute global matrix vector product
w = Function(W)
ux = np.zeros(G.shape[1])
ux[: len(u.x.array)] = u.x.array[:]
w.x.array[: G.shape[0]] = G @ ux
w.x.scatter_forward()
atol = 100 * np.finfo(default_real_type).resolution
assert np.allclose(w_vec.x.array, w.x.array, atol=atol)
|