1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
|
# Copyright (C) 2009-2020 Garth N. Wells, Matthew W. Scroggs and Jorgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Unit tests for the fem interface"""
import random
from itertools import combinations, product
from mpi4py import MPI
import numpy as np
import pytest
import dolfinx
import ufl
from basix.ufl import element
from dolfinx.fem import (
Constant,
Function,
assemble_matrix,
assemble_scalar,
assemble_vector,
form,
functionspace,
)
from dolfinx.mesh import CellType, create_mesh, meshtags
parametrize_cell_types = pytest.mark.parametrize(
"cell_type",
[
CellType.interval,
CellType.triangle,
CellType.tetrahedron,
CellType.quadrilateral,
CellType.hexahedron,
],
)
parametrize_dtypes = pytest.mark.parametrize(
"dtype",
[
np.float32,
np.float64,
pytest.param(np.complex64, marks=pytest.mark.xfail_win32_complex),
pytest.param(np.complex128, marks=pytest.mark.xfail_win32_complex),
],
)
def unit_cell_points(cell_type, dtype):
if cell_type == CellType.interval:
return np.array([[0.0], [1.0]], dtype=dtype)
if cell_type == CellType.triangle:
# Define equilateral triangle with area 1
root = 3**0.25 # 4th root of 3
return np.array([[0.0, 0.0], [2 / root, 0.0], [1 / root, root]], dtype=dtype)
if cell_type == CellType.tetrahedron:
# Define regular tetrahedron with volume 1
s = 2**0.5 * 3 ** (1 / 3) # side length
return np.array(
[
[0.0, 0.0, 0.0],
[s, 0.0, 0.0],
[s / 2, s * np.sqrt(3) / 2, 0.0],
[s / 2, s / 2 / np.sqrt(3), s * np.sqrt(2 / 3)],
],
dtype=dtype,
)
elif cell_type == CellType.quadrilateral:
# Define unit quadrilateral (area 1)
return np.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]], dtype=dtype)
elif cell_type == CellType.hexahedron:
# Define unit hexahedron (volume 1)
return np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
[1.0, 0.0, 1.0],
[0.0, 1.0, 1.0],
[1.0, 1.0, 1.0],
],
dtype=dtype,
)
def unit_cell(cell_type, dtype, random_order=True):
points = unit_cell_points(cell_type, dtype)
num_points = len(points)
# Randomly number the points and create the mesh
order = list(range(num_points))
if random_order:
random.shuffle(order)
ordered_points = np.zeros(points.shape, dtype=dtype)
for i, j in enumerate(order):
ordered_points[j] = points[i]
cells = np.array([order])
domain = ufl.Mesh(
element("Lagrange", cell_type.name, 1, shape=(ordered_points.shape[1],), dtype=dtype)
)
mesh = create_mesh(MPI.COMM_WORLD, cells, ordered_points, domain)
return mesh
def two_unit_cells(cell_type, dtype, agree=False, random_order=True, return_order=False):
if cell_type == CellType.interval:
points = np.array([[0.0], [1.0], [-1.0]], dtype=dtype)
if agree:
cells = [[0, 1], [2, 0]]
else:
cells = [[0, 1], [0, 2]]
if cell_type == CellType.triangle:
# Define equilateral triangles with area 1
root = 3**0.25 # 4th root of 3
points = np.array(
[[0.0, 0.0], [2 / root, 0.0], [1 / root, root], [1 / root, -root]], dtype=dtype
)
if agree:
cells = [[0, 1, 2], [0, 3, 1]]
else:
cells = [[0, 1, 2], [1, 0, 3]]
elif cell_type == CellType.tetrahedron:
# Define regular tetrahedra with volume 1
s = 2**0.5 * 3 ** (1 / 3) # side length
points = np.array(
[
[0.0, 0.0, 0.0],
[s, 0.0, 0.0],
[s / 2, s * np.sqrt(3) / 2, 0.0],
[s / 2, s / 2 / np.sqrt(3), s * np.sqrt(2 / 3)],
[s / 2, s / 2 / np.sqrt(3), -s * np.sqrt(2 / 3)],
],
dtype=dtype,
)
if agree:
cells = [[0, 1, 2, 3], [0, 1, 4, 2]]
else:
cells = [[0, 1, 2, 3], [0, 2, 1, 4]]
elif cell_type == CellType.quadrilateral:
# Define unit quadrilaterals (area 1)
points = np.array(
[[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0], [0.0, -1.0], [1.0, -1.0]], dtype=dtype
)
if agree:
cells = [[0, 1, 2, 3], [4, 5, 0, 1]]
else:
cells = [[0, 1, 2, 3], [5, 1, 4, 0]]
elif cell_type == CellType.hexahedron:
# Define unit hexahedra (volume 1)
points = np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
[1.0, 0.0, 1.0],
[0.0, 1.0, 1.0],
[1.0, 1.0, 1.0],
[0.0, 0.0, -1.0],
[1.0, 0.0, -1.0],
[0.0, 1.0, -1.0],
[1.0, 1.0, -1.0],
],
dtype=dtype,
)
if agree:
cells = [[0, 1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 0, 1, 2, 3]]
else:
cells = [[0, 1, 2, 3, 4, 5, 6, 7], [9, 11, 8, 10, 1, 3, 0, 2]]
num_points = len(points)
# Randomly number the points and create the mesh
order = list(range(num_points))
if random_order:
random.shuffle(order)
ordered_points = np.zeros(points.shape, dtype=dtype)
for i, j in enumerate(order):
ordered_points[j] = points[i]
ordered_cells = np.array([[order[i] for i in c] for c in cells])
domain = ufl.Mesh(
element("Lagrange", cell_type.name, 1, shape=(ordered_points.shape[1],), dtype=dtype)
)
mesh = create_mesh(MPI.COMM_WORLD, ordered_cells, ordered_points, domain)
if return_order:
return mesh, order
return mesh
@pytest.mark.skip_in_parallel
@parametrize_cell_types
@parametrize_dtypes
def test_facet_integral(cell_type, dtype):
"""Test that the integral of a function over a facet is correct"""
xtype = np.real(dtype(0)).dtype
for count in range(5):
mesh = unit_cell(cell_type, xtype)
tdim = mesh.topology.dim
V = functionspace(mesh, ("Lagrange", 2))
v = Function(V, dtype=dtype)
mesh.topology.create_entities(tdim - 1)
map_f = mesh.topology.index_map(tdim - 1)
num_facets = map_f.size_local + map_f.num_ghosts
indices = np.arange(0, num_facets)
values = np.arange(0, num_facets, dtype=np.int32)
marker = meshtags(mesh, tdim - 1, indices, values)
# Functions that will have the same integral over each facet
if cell_type == CellType.triangle:
root = 3**0.25 # 4th root of 3
v.interpolate(lambda x: (x[0] - 1 / root) ** 2 + (x[1] - root / 3) ** 2)
elif cell_type == CellType.quadrilateral:
v.interpolate(lambda x: x[0] * (1 - x[0]) + x[1] * (1 - x[1]))
elif cell_type == CellType.tetrahedron:
s = 2**0.5 * 3 ** (1 / 3) # side length
v.interpolate(
lambda x: (x[0] - s / 2) ** 2
+ (x[1] - s / 2 / np.sqrt(3)) ** 2
+ (x[2] - s * np.sqrt(2 / 3) / 4) ** 2
)
elif cell_type == CellType.hexahedron:
v.interpolate(lambda x: x[0] * (1 - x[0]) + x[1] * (1 - x[1]) + x[2] * (1 - x[2]))
# Check that integral of these functions over each face are
# equal
mesh.topology.create_connectivity(tdim - 1, tdim)
mesh.topology.create_connectivity(tdim, tdim - 1)
out = []
for j in range(num_facets):
a = form(v * ufl.ds(subdomain_data=marker, subdomain_id=j), dtype=dtype)
result = assemble_scalar(a)
out.append(result)
assert np.isclose(result, out[0], atol=np.finfo(dtype).eps)
@pytest.mark.skip_in_parallel
@parametrize_cell_types
@parametrize_dtypes
def test_facet_normals(cell_type, dtype):
"""Test that FacetNormal is outward facing"""
xtype = np.real(dtype(0)).dtype
for count in range(5):
mesh = unit_cell(cell_type, xtype)
tdim = mesh.topology.dim
mesh.topology.create_entities(tdim - 1)
gdim = mesh.geometry.dim
V = functionspace(mesh, ("Lagrange", 1, (gdim,)))
normal = ufl.FacetNormal(mesh)
v = Function(V, dtype=dtype)
mesh.topology.create_entities(tdim - 1)
map_f = mesh.topology.index_map(tdim - 1)
num_facets = map_f.size_local + map_f.num_ghosts
indices = np.arange(0, num_facets)
values = np.arange(0, num_facets, dtype=np.int32)
marker = meshtags(mesh, tdim - 1, indices, values)
# For each facet, check that the inner product of the normal and
# the vector that has a positive normal component on only that
# facet is positive
for i in range(num_facets):
if cell_type == CellType.interval:
co = mesh.geometry.x[i]
v.interpolate(lambda x: x[0] - co[0])
if cell_type == CellType.triangle:
co = mesh.geometry.x[i]
# Vector function that is zero at `co` and points away
# from `co` so that there is no normal component on two
# edges and the integral over the other edge is 1
v.interpolate(lambda x: ((x[0] - co[0]) / 2, (x[1] - co[1]) / 2))
elif cell_type == CellType.tetrahedron:
co = mesh.geometry.x[i]
# Vector function that is zero at `co` and points away
# from `co` so that there is no normal component on
# three faces and the integral over the other edge is 1
v.interpolate(
lambda x: ((x[0] - co[0]) / 3, (x[1] - co[1]) / 3, (x[2] - co[2]) / 3)
)
elif cell_type == CellType.quadrilateral:
# function that is 0 on one edge and points away from
# that edge so that there is no normal component on
# three edges
v.interpolate(
lambda x: tuple(x[j] - i % 2 if j == i // 2 else 0 * x[j] for j in range(2))
)
elif cell_type == CellType.hexahedron:
# function that is 0 on one face and points away from
# that face so that there is no normal component on five
# faces
v.interpolate(
lambda x: tuple(x[j] - i % 2 if j == i // 3 else 0 * x[j] for j in range(3))
)
# Check that integrals these functions dotted with the
# normal over a face is 1 on one face and 0 on the others
ones = 0
for j in range(num_facets):
a = form(
ufl.inner(v, normal) * ufl.ds(subdomain_data=marker, subdomain_id=j),
dtype=dtype,
)
result = assemble_scalar(a)
if np.isclose(result, 1, atol=np.finfo(dtype).eps):
ones += 1
else:
assert np.isclose(result, 0, atol=1.0e-6)
assert ones == 1
@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("space_type", ["Lagrange", "DG"])
@parametrize_cell_types
@parametrize_dtypes
def test_plus_minus(cell_type, space_type, dtype):
"""Test that ('+') and ('-') give the same value for continuous functions"""
xtype = np.real(dtype(0)).dtype
results = []
for count in range(3):
for agree in [True, False]:
mesh = two_unit_cells(cell_type, xtype, agree)
V = functionspace(mesh, (space_type, 1))
v = Function(V, dtype=dtype)
v.interpolate(lambda x: x[0] - 2 * x[1])
# Check that these two integrals are equal
for pm1, pm2 in product(["+", "-"], repeat=2):
a = form(v(pm1) * v(pm2) * ufl.dS, dtype=dtype)
results.append(assemble_scalar(a))
for i, j in combinations(results, 2):
assert np.isclose(i, j, atol=np.finfo(dtype).eps)
@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("pm", ["+", "-"])
@parametrize_cell_types
@parametrize_dtypes
def test_plus_minus_simple_vector(cell_type, pm, dtype):
"""Test that ('+') and ('-') match up with the correct DOFs for DG functions"""
xtype = np.real(dtype(0)).dtype
results = []
orders = []
spaces = []
for count in range(3):
for agree in [True, False]:
# Two cell mesh with randomly numbered points
mesh, order = two_unit_cells(cell_type, xtype, agree, return_order=True)
if cell_type in [CellType.interval, CellType.triangle, CellType.tetrahedron]:
V = functionspace(mesh, ("DG", 1))
else:
V = functionspace(mesh, ("DQ", 1))
# Assemble vectors v['+'] * dS and v['-'] * dS for a few
# different numberings
v = ufl.TestFunction(V)
a = form(ufl.inner(1.0, v(pm)) * ufl.dS, dtype=dtype)
result = assemble_vector(a)
spaces.append(V)
results.append(result.array)
orders.append(order)
# Check that the above vectors all have the same values as the first
# one, but permuted due to differently ordered dofs
dofmap0 = spaces[0].mesh.geometry.dofmap
for result, space in zip(results[1:], spaces[1:]):
# Get the data relating to two results
dofmap1 = space.mesh.geometry.dofmap
# For each cell
for cell in range(2):
# For each point in cell 0 in the first mesh
for dof0, point0 in zip(spaces[0].dofmap.cell_dofs(cell), dofmap0[cell]):
# Find the point in the cell 0 in the second mesh
for dof1, point1 in zip(space.dofmap.cell_dofs(cell), dofmap1[cell]):
if np.allclose(
spaces[0].mesh.geometry.x[point0], space.mesh.geometry.x[point1]
):
break
else:
# If no matching point found, fail
assert False
assert np.isclose(results[0][dof0], result[dof1], atol=np.finfo(dtype).eps)
@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("pm1", ["+", "-"])
@pytest.mark.parametrize("pm2", ["+", "-"])
@parametrize_cell_types
@parametrize_dtypes
def test_plus_minus_vector(cell_type, pm1, pm2, dtype):
"""Test that ('+') and ('-') match up with the correct DOFs for DG functions"""
xtype = np.real(dtype(0)).dtype
results = []
orders = []
spaces = []
for count in range(3):
for agree in [True, False]:
# Two cell mesh with randomly numbered points
mesh, order = two_unit_cells(cell_type, xtype, agree, return_order=True)
if cell_type in [CellType.interval, CellType.triangle, CellType.tetrahedron]:
V = functionspace(mesh, ("DG", 1))
else:
V = functionspace(mesh, ("DQ", 1))
# Assemble vectors with combinations of + and - for a few
# different numberings
f = Function(V, dtype=dtype)
f.interpolate(lambda x: x[0] - 2 * x[1])
v = ufl.TestFunction(V)
a = form(ufl.inner(f(pm1), v(pm2)) * ufl.dS, dtype=dtype)
result = assemble_vector(a)
spaces.append(V)
results.append(result.array)
orders.append(order)
# Check that the above vectors all have the same values as the first
# one, but permuted due to differently ordered dofs
dofmap0 = spaces[0].mesh.geometry.dofmap
for result, space in zip(results[1:], spaces[1:]):
# Get the data relating to two results
dofmap1 = space.mesh.geometry.dofmap
# For each cell
for cell in range(2):
# For each point in cell 0 in the first mesh
for dof0, point0 in zip(spaces[0].dofmap.cell_dofs(cell), dofmap0[cell]):
# Find the point in the cell 0 in the second mesh
for dof1, point1 in zip(space.dofmap.cell_dofs(cell), dofmap1[cell]):
if np.allclose(
spaces[0].mesh.geometry.x[point0], space.mesh.geometry.x[point1]
):
break
else:
# If no matching point found, fail
assert False
assert np.isclose(results[0][dof0], result[dof1], atol=1.0e-6)
@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("pm1", ["+", "-"])
@pytest.mark.parametrize("pm2", ["+", "-"])
@parametrize_cell_types
@parametrize_dtypes
def test_plus_minus_matrix(cell_type, pm1, pm2, dtype):
"""Test that ('+') and ('-') match up with the correct DOFs for DG functions"""
xtype = np.real(dtype(0)).dtype
results = []
spaces = []
orders = []
for count in range(3):
for agree in [True, False]:
# Two cell mesh with randomly numbered points
mesh, order = two_unit_cells(cell_type, xtype, agree, return_order=True)
V = functionspace(mesh, ("DG", 1))
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
# Assemble matrices with combinations of + and - for a few
# different numberings
a = form(ufl.inner(u(pm1), v(pm2)) * ufl.dS, dtype=dtype)
result = assemble_matrix(a, [])
result.scatter_reverse()
spaces.append(V)
results.append(result.to_dense())
orders.append(order)
# Check that the above matrices all have the same values, but
# permuted due to differently ordered dofs
dofmap0 = spaces[0].mesh.geometry.dofmap
for result, space in zip(results[1:], spaces[1:]):
# Get the data relating to two results
dofmap1 = space.mesh.geometry.dofmap
dof_order = []
# For each cell
for cell in range(2):
# For each point in cell 0 in the first mesh
for dof0, point0 in zip(spaces[0].dofmap.cell_dofs(cell), dofmap0[cell]):
# Find the point in the cell 0 in the second mesh
for dof1, point1 in zip(space.dofmap.cell_dofs(cell), dofmap1[cell]):
if np.allclose(
spaces[0].mesh.geometry.x[point0], space.mesh.geometry.x[point1]
):
break
else:
# If no matching point found, fail
assert False
dof_order.append((dof0, dof1))
# For all dof pairs, check that entries in the matrix agree
for a, b in dof_order:
for c, d in dof_order:
assert np.isclose(results[0][a, c], result[b, d], atol=np.finfo(dtype).eps)
@pytest.mark.skip(
reason="Test needs replacing because it assumes the mesh constructor doesn't re-order points."
)
@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("order", [1, 2])
@pytest.mark.parametrize("space_type", ["N1curl", "N2curl"])
@parametrize_dtypes
def test_curl(space_type, order, dtype):
"""Test that curl is consistent for different cell permutations of a tetrahedron."""
xtype = np.real(dtype(0)).dtype
tdim = dolfinx.mesh.cell_dim(CellType.tetrahedron)
points = unit_cell_points(CellType.tetrahedron, xtype)
spaces = []
results = []
cell = list(range(len(points)))
random.seed(2)
# Assemble vector on 5 randomly numbered cells
for i in range(5):
random.shuffle(cell)
domain = ufl.Mesh(element("Lagrange", "tetrahedron", 1, shape=(3,), dtype=dtype))
mesh = create_mesh(MPI.COMM_WORLD, [cell], points, domain)
V = functionspace(mesh, (space_type, order))
v = ufl.TestFunction(V)
f = ufl.as_vector(tuple(1 if i == 0 else 0 for i in range(tdim)))
L = form(ufl.inner(f, ufl.curl(v)) * ufl.dx)
result = assemble_vector(L)
spaces.append(V)
results.append(result.array)
# Set data for first space
V0 = spaces[0]
c10_0 = V.mesh.topology.connectivity(1, 0)
# Check that all DOFs on edges agree
# Loop over cell edges
for i, edge in enumerate(V0.mesh.topology.connectivity(tdim, 1).links(0)):
# Get the edge vertices
vertices0 = c10_0.links(edge) # Need to map back
# Get assembled values on edge
values0 = sorted(
[result[V0.dofmap.cell_dofs(0)[a]] for a in V0.dofmap.dof_layout.entity_dofs(1, i)]
)
for V, result in zip(spaces[1:], results[1:]):
# Get edge->vertex connectivity
c10 = V.mesh.topology.connectivity(1, 0)
# Loop over cell edges
for j, e in enumerate(V.mesh.topology.connectivity(tdim, 1).links(0)):
if sorted(c10.links(e)) == sorted(vertices0): # need to map back c.links(e)
values = sorted(
[
result[V.dofmap.cell_dofs(0)[a]]
for a in V.dofmap.dof_layout.entity_dofs(1, j)
]
)
assert np.allclose(values0, values)
break
else:
continue
break
def create_quad_mesh(offset, dtype):
"""Creates a mesh of a single square element if offset = 0, or a
trapezium element if |offset| > 0."""
x = np.array([[0, 0], [1, 0], [0, 0.5 + offset], [1, 0.5 - offset]], dtype=dtype)
cells = np.array([[0, 1, 2, 3]])
ufl_mesh = ufl.Mesh(element("Lagrange", "quadrilateral", 1, shape=(2,), dtype=dtype))
mesh = create_mesh(MPI.COMM_WORLD, cells, x, ufl_mesh)
return mesh
@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("k", [0, 1, 2])
@parametrize_dtypes
def test_div_general_quads_mat(k, dtype):
"""Tests that assembling inner(u, div(w)) * dx, where u is from a
"DQ" space and w is from an "RTCF" space, gives the same matrix for
square and trapezoidal elements. This should be the case due to the
properties of the Piola transform."""
# Assemble matrix on a mesh of square elements and on a mesh of
# trapezium elements
xtype = np.real(dtype(0)).dtype
def assemble_div_matrix(k, offset):
mesh = create_quad_mesh(offset, dtype=xtype)
V = functionspace(mesh, ("DQ", k))
W = functionspace(mesh, ("RTCF", k + 1))
u, w = ufl.TrialFunction(V), ufl.TestFunction(W)
a = form(ufl.inner(u, ufl.div(w)) * ufl.dx, dtype=dtype)
A = assemble_matrix(a)
return A.to_dense()
A_square = assemble_div_matrix(k, 0)
A_trap = assemble_div_matrix(k, 0.25)
# Due to the properties of the Piola transform, A_square and A_trap
# should be equal
assert np.allclose(A_square, A_trap, atol=1e-6)
@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("k", [0, 1, 2])
@parametrize_dtypes
def test_div_general_quads_vec(k, dtype):
"""Tests that assembling inner(1, div(w)) * dx, where w is from an
"RTCF" space, gives the same matrix for square and trapezoidal
elements. This should be the case due to the properties of the Piola
transform."""
# Assemble vector on a mesh of square elements and on a mesh of
# trapezium elements
xtype = np.real(dtype(0)).dtype
def assemble_div_vector(k, offset):
mesh = create_quad_mesh(offset, dtype=xtype)
V = functionspace(mesh, ("RTCF", k + 1))
v = ufl.TestFunction(V)
L = form(ufl.inner(Constant(mesh, dtype(1)), ufl.div(v)) * ufl.dx, dtype=dtype)
b = assemble_vector(L)
return b.array
L_square = assemble_div_vector(k, 0)
L_trap = assemble_div_vector(k, 0.25)
# Due to the properties of the Piola transform, L_square and L_trap
# should be equal
assert np.allclose(L_square, L_trap, atol=1e-5)
|