1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
|
# Copyright (C) 2021 Jorgen Dokken, Jack S. Hale, Matthew Scroggs and Garth N. Wells
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
from pathlib import Path
from mpi4py import MPI
import numpy as np
import pytest
import basix
import dolfinx
import ufl
from basix.ufl import element, mixed_element
from dolfinx import default_real_type, la
from dolfinx.fem import (
Function,
apply_lifting,
assemble_matrix,
assemble_scalar,
assemble_vector,
dirichletbc,
form,
functionspace,
locate_dofs_topological,
)
from dolfinx.io import XDMFFile
from dolfinx.mesh import (
CellType,
create_rectangle,
create_unit_cube,
create_unit_square,
exterior_facet_indices,
)
from ufl import (
CellDiameter,
FacetNormal,
SpatialCoordinate,
TestFunction,
TrialFunction,
avg,
div,
dS,
ds,
dx,
grad,
inner,
jump,
)
def run_scalar_test(mesh, V, degree, cg_solver):
"""Manufactured Poisson problem, solving u = x[1]**p, where p is the
degree of the Lagrange function space.
"""
dtype = mesh.geometry.x.dtype
u, v = TrialFunction(V), TestFunction(V)
a = inner(grad(u), grad(v)) * dx
# Get quadrature degree for bilinear form integrand (ignores effect of non-affine map)
a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
a.integrals()[0].metadata()["quadrature_degree"] = (
ufl.algorithms.estimate_total_polynomial_degree(a)
)
a = form(a, dtype=dtype)
# Source term
x = SpatialCoordinate(mesh)
u_exact = x[1] ** degree
f = -div(grad(u_exact))
# Set quadrature degree for linear form integrand (ignores effect of non-affine map)
L = inner(f, v) * dx(metadata={"quadrature_degree": -1})
L.integrals()[0].metadata()["quadrature_degree"] = (
ufl.algorithms.estimate_total_polynomial_degree(L)
)
L = form(L, dtype=dtype)
u_bc = Function(V, dtype=dtype)
u_bc.interpolate(lambda x: x[1] ** degree)
# Create Dirichlet boundary condition
facetdim = mesh.topology.dim - 1
mesh.topology.create_connectivity(facetdim, mesh.topology.dim)
bndry_facets = exterior_facet_indices(mesh.topology)
bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
bc = dirichletbc(u_bc, bdofs)
b = assemble_vector(L)
apply_lifting(b.array, [a], bcs=[[bc]])
b.scatter_reverse(la.InsertMode.add)
bc.set(b.array)
a = form(a, dtype=dtype)
A = assemble_matrix(a, bcs=[bc])
A.scatter_reverse()
uh = Function(V, dtype=dtype)
cg_solver(mesh.comm, A, b, uh.x)
uh.x.scatter_forward()
M = (u_exact - uh) ** 2 * dx
M = form(M, dtype=dtype)
error = mesh.comm.allreduce(assemble_scalar(M), op=MPI.SUM)
eps = np.sqrt(np.finfo(dtype).eps)
assert np.isclose(error, 0.0, atol=eps)
def run_vector_test(mesh, V, degree, cg_solver, maxit=500, rtol=None):
"""Projection into H(div/curl) spaces."""
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
a = form(inner(u, v) * dx)
# Source term
x = SpatialCoordinate(mesh)
u_exact = x[0] ** degree
L = form(inner(u_exact, v[0]) * dx)
b = assemble_vector(L)
b.scatter_reverse(la.InsertMode.add)
A = assemble_matrix(a)
A.scatter_reverse()
# Solve
uh = Function(V)
cg_solver(mesh.comm, A, b, uh.x, maxit=maxit, rtol=rtol)
uh.x.scatter_forward()
# Calculate error
M = (u_exact - uh[0]) ** 2 * dx
for i in range(1, mesh.topology.dim):
M += uh[i] ** 2 * dx
M = form(M)
error = mesh.comm.allreduce(assemble_scalar(M), op=MPI.SUM)
assert np.isclose(error, 0.0, atol=1e-07)
def run_dg_test(mesh, V, degree, cg_solver):
"""Manufactured Poisson problem, solving u = x[component]**n, where
n is the degree of the Lagrange function space."""
u, v = TrialFunction(V), TestFunction(V)
# Exact solution
x = SpatialCoordinate(mesh)
u_exact = x[1] ** degree
# Coefficient
k = Function(V)
k.x.array[:] = 2.0
# Source term
f = -div(k * grad(u_exact))
# Mesh normals and element size
n = FacetNormal(mesh)
h = CellDiameter(mesh)
h_avg = (h("+") + h("-")) / 2.0
# Penalty parameter
alpha = 32
dx_ = dx(metadata={"quadrature_degree": -1})
ds_ = ds(metadata={"quadrature_degree": -1})
dS_ = dS(metadata={"quadrature_degree": -1})
a = (
inner(k * grad(u), grad(v)) * dx_
- k("+") * inner(avg(grad(u)), jump(v, n)) * dS_
- k("+") * inner(jump(u, n), avg(grad(v))) * dS_
+ k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_
- inner(k * grad(u), v * n) * ds_
- inner(u * n, k * grad(v)) * ds_
+ (alpha / h) * inner(k * u, v) * ds_
)
L = (
inner(f, v) * dx_
- inner(k * u_exact * n, grad(v)) * ds_
+ (alpha / h) * inner(k * u_exact, v) * ds_
)
for integral in a.integrals():
integral.metadata()["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
a
)
for integral in L.integrals():
integral.metadata()["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
L
)
a, L = form(a), form(L)
b = assemble_vector(L)
b.scatter_reverse(la.InsertMode.add)
A = assemble_matrix(a, [])
A.scatter_reverse()
# Solve
uh = Function(V)
cg_solver(mesh.comm, A, b, uh.x)
uh.x.scatter_forward()
# Calculate error
M = (u_exact - uh) ** 2 * dx
M = form(M)
error = mesh.comm.allreduce(assemble_scalar(M), op=MPI.SUM)
assert np.isclose(error, 0.0)
@pytest.mark.parametrize("family", ["N1curl", "N2curl"])
@pytest.mark.parametrize("order", [1])
def test_petsc_curl_curl_eigenvalue(family, order):
"""curl-curl eigenvalue problem.
Solved using H(curl)-conforming finite element method.
See https://www-users.cse.umn.edu/~arnold/papers/icm2002.pdf for details.
"""
if not dolfinx.cpp.common.has_petsc:
return
petsc4py = pytest.importorskip("petsc4py") # noqa: F841
from petsc4py import PETSc
from dolfinx.fem.petsc import assemble_matrix as petsc_assemble_matrix
slepc4py = pytest.importorskip("slepc4py") # noqa: F841
from slepc4py import SLEPc
mesh = create_rectangle(
MPI.COMM_WORLD,
[np.array([0.0, 0.0]), np.array([np.pi, np.pi])],
[24, 24],
CellType.triangle,
)
e = element(family, basix.CellType.triangle, order, dtype=default_real_type)
V = functionspace(mesh, e)
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
a = inner(ufl.curl(u), ufl.curl(v)) * dx
b = inner(u, v) * dx
tdim = mesh.topology.dim
mesh.topology.create_connectivity(tdim - 1, tdim)
boundary_facets = exterior_facet_indices(mesh.topology)
boundary_dofs = locate_dofs_topological(V, mesh.topology.dim - 1, boundary_facets)
zero_u = Function(V)
zero_u.x.array[:] = 0
bcs = [dirichletbc(zero_u, boundary_dofs)]
a, b = form(a), form(b)
A = petsc_assemble_matrix(a, bcs=bcs)
A.assemble()
B = petsc_assemble_matrix(b, bcs=bcs, diagonal=0.01)
B.assemble()
eps = SLEPc.EPS().create()
eps.setOperators(A, B)
PETSc.Options()["eps_type"] = "krylovschur"
PETSc.Options()["eps_gen_hermitian"] = ""
PETSc.Options()["eps_target_magnitude"] = ""
PETSc.Options()["eps_target"] = 5.0
PETSc.Options()["eps_view"] = ""
PETSc.Options()["eps_nev"] = 12
eps.setFromOptions()
eps.solve()
num_converged = eps.getConverged()
evlas_unsorted = np.zeros(num_converged, dtype=np.complex128)
for i in range(0, num_converged):
evlas_unsorted[i] = eps.getEigenvalue(i)
assert np.isclose(np.imag(evlas_unsorted), 0.0).all()
evals_sorted = np.sort(np.real(evlas_unsorted))[:-1]
evals_sorted = evals_sorted[np.logical_not(evals_sorted < 1e-8)]
evals_exact = np.array([1.0, 1.0, 2.0, 4.0, 4.0, 5.0, 5.0, 8.0, 9.0])
assert np.isclose(evals_sorted[0 : evals_exact.shape[0]], evals_exact, rtol=1e-2).all()
eps.destroy()
A.destroy()
B.destroy()
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("family", ["HHJ", "Regge"])
def test_biharmonic(family, dtype):
"""Manufactured biharmonic problem.
Solved using rotated Regge or the Hellan-Herrmann-Johnson (HHJ)
mixed finite element method in two-dimensions.
Runs in serial to use the SciPy sparse solvers (to avoid PETSc
dependency).
"""
import scipy
xtype = np.real(dtype(0)).dtype
mesh = create_rectangle(
MPI.COMM_SELF,
[np.array([0.0, 0.0]), np.array([1.0, 1.0])],
[16, 16],
CellType.triangle,
dtype=xtype,
)
e = mixed_element(
[
element(family, basix.CellType.triangle, 1, dtype=dtype),
element(basix.ElementFamily.P, basix.CellType.triangle, 2, dtype=dtype),
]
)
V = functionspace(mesh, e)
sigma, u = ufl.TrialFunctions(V)
tau, v = ufl.TestFunctions(V)
x = ufl.SpatialCoordinate(mesh)
u_exact = (
ufl.sin(ufl.pi * x[0])
* ufl.sin(ufl.pi * x[0])
* ufl.sin(ufl.pi * x[1])
* ufl.sin(ufl.pi * x[1])
)
f_exact = div(grad(div(grad(u_exact))))
sigma_exact = grad(grad(u_exact))
# sigma and tau are tangential-tangential continuous according to
# the H(curl curl) continuity of the Regge space. However, for the
# biharmonic problem we require normal-normal continuity H (div
# div). Theorem 4.2 of Lizao Li's PhD thesis shows that the latter
# space can be constructed by the former through the action of the
# operator S:
def S(tau):
return tau - ufl.Identity(2) * ufl.tr(tau)
if family == "Regge":
# Apply S if we are working with Regge which is H(curl curl)
sigma_S = S(sigma)
tau_S = S(tau)
elif family == "HHJ":
# Don't apply S if we are working with HHJ which is already
# H(div div)
sigma_S = sigma
tau_S = tau
else:
raise ValueError(f"Family {family} not supported.")
# Discrete duality inner product eq. 4.5 Lizao Li's PhD thesis
def b(tau_S, v):
n = FacetNormal(mesh)
return (
inner(tau_S, grad(grad(v))) * dx
- ufl.dot(ufl.dot(tau_S("+"), n("+")), n("+")) * jump(grad(v), n) * dS
- ufl.dot(ufl.dot(tau_S, n), n) * ufl.dot(grad(v), n) * ds
)
# Non-symmetric formulation
a = form(inner(sigma_S, tau_S) * dx - b(tau_S, u) + b(sigma_S, v), dtype=dtype)
L = form(inner(f_exact, v) * dx, dtype=dtype)
V_1 = V.sub(1).collapse()[0]
zero_u = Function(V_1, dtype=dtype)
zero_u.x.array[:] = 0
# Strong (Dirichlet) boundary condition
tdim = mesh.topology.dim
boundary_facets = exterior_facet_indices(mesh.topology)
boundary_dofs = locate_dofs_topological((V.sub(1), V_1), tdim - 1, boundary_facets)
bcs = [dirichletbc(zero_u, boundary_dofs, V.sub(1))]
A = assemble_matrix(a, bcs=bcs)
A.scatter_reverse()
b = assemble_vector(L)
apply_lifting(b.array, [a], bcs=[bcs])
b.scatter_reverse(la.InsertMode.add)
for bc in bcs:
bc.set(b.array)
x_h = Function(V, dtype=dtype)
x_h.x.array[:] = scipy.sparse.linalg.spsolve(A.to_scipy(), b.array)
x_h.x.scatter_forward()
# Recall that x_h has flattened indices
u_error_numerator = np.sqrt(
mesh.comm.allreduce(
assemble_scalar(
form(
inner(u_exact - x_h[4], u_exact - x_h[4])
* dx(mesh, metadata={"quadrature_degree": 6}),
dtype=dtype,
)
),
op=MPI.SUM,
)
)
u_error_denominator = np.sqrt(
mesh.comm.allreduce(
assemble_scalar(
form(
inner(u_exact, u_exact) * dx(mesh, metadata={"quadrature_degree": 6}),
dtype=dtype,
)
),
op=MPI.SUM,
)
)
assert np.abs(u_error_numerator / u_error_denominator) < 0.05
# Reconstruct tensor from flattened indices.
# Apply inverse transform. In 2D we have S^{-1} = S.
if family == "Regge":
sigma_h = S(ufl.as_tensor([[x_h[0], x_h[1]], [x_h[2], x_h[3]]]))
elif family == "HHJ":
sigma_h = ufl.as_tensor([[x_h[0], x_h[1]], [x_h[2], x_h[3]]])
else:
raise ValueError(f"Family {family} not supported.")
sigma_error_numerator = np.sqrt(
mesh.comm.allreduce(
assemble_scalar(
form(
inner(sigma_exact - sigma_h, sigma_exact - sigma_h)
* dx(mesh, metadata={"quadrature_degree": 6}),
dtype=dtype,
)
),
op=MPI.SUM,
)
)
sigma_error_denominator = np.sqrt(
mesh.comm.allreduce(
assemble_scalar(
form(
inner(sigma_exact, sigma_exact) * dx(mesh, metadata={"quadrature_degree": 6}),
dtype=dtype,
)
),
op=MPI.SUM,
)
)
assert np.abs(sigma_error_numerator / sigma_error_denominator) < 0.05
def get_mesh(cell_type, datadir):
# In parallel, use larger meshes
if cell_type == CellType.triangle:
filename = "create_unit_square_triangle.xdmf"
elif cell_type == CellType.quadrilateral:
filename = "create_unit_square_quad.xdmf"
elif cell_type == CellType.tetrahedron:
filename = "create_unit_cube_tetra.xdmf"
elif cell_type == CellType.hexahedron:
filename = "create_unit_cube_hexahedron.xdmf"
with XDMFFile(
MPI.COMM_WORLD, Path(datadir, filename), "r", encoding=XDMFFile.Encoding.ASCII
) as xdmf:
return xdmf.read_mesh(name="Grid")
parametrize_cell_types = pytest.mark.parametrize(
"cell_type",
[CellType.triangle, CellType.quadrilateral, CellType.tetrahedron, CellType.hexahedron],
)
parametrize_cell_types_simplex = pytest.mark.parametrize(
"cell_type", [CellType.triangle, CellType.tetrahedron]
)
parametrize_cell_types_tp = pytest.mark.parametrize(
"cell_type", [CellType.quadrilateral, CellType.hexahedron]
)
parametrize_cell_types_quad = pytest.mark.parametrize("cell_type", [CellType.quadrilateral])
parametrize_cell_types_hex = pytest.mark.parametrize("cell_type", [CellType.hexahedron])
# Run tests on all spaces in periodic table on triangles and tetrahedra
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_simplex
@pytest.mark.parametrize("family", ["Lagrange"])
@pytest.mark.parametrize("degree", [2, 3, 4])
def test_P_simplex(family, degree, cell_type, datadir, cg_solver):
if cell_type == CellType.tetrahedron and degree == 4:
pytest.skip("Skip expensive test on tetrahedron")
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_scalar_test(mesh, V, degree, cg_solver)
@parametrize_cell_types_simplex
@pytest.mark.parametrize("family", ["Lagrange"])
@pytest.mark.parametrize("degree", [2, 3, 4])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_P_simplex_built_in(family, degree, dtype, cell_type, datadir, cg_solver):
if cell_type == CellType.tetrahedron:
mesh = create_unit_cube(MPI.COMM_WORLD, 5, 5, 5, dtype=dtype)
elif cell_type == CellType.triangle:
mesh = create_unit_square(MPI.COMM_WORLD, 5, 5, dtype=dtype)
V = functionspace(mesh, (family, degree))
run_scalar_test(mesh, V, degree, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_simplex
@pytest.mark.parametrize("family", ["Lagrange"])
@pytest.mark.parametrize("degree", [2, 3, 4])
def test_vector_P_simplex(family, degree, cell_type, datadir, cg_solver):
if cell_type == CellType.tetrahedron and degree == 4:
pytest.skip("Skip expensive test on tetrahedron")
mesh = get_mesh(cell_type, datadir)
gdim = mesh.geometry.dim
V = functionspace(mesh, (family, degree, (gdim,)))
run_vector_test(mesh, V, degree, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_simplex
@pytest.mark.parametrize("family", ["DG"])
@pytest.mark.parametrize("degree", [2, 3])
def test_dP_simplex(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_dg_test(mesh, V, degree, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_simplex
@pytest.mark.parametrize("family", ["RT", "N1curl"])
@pytest.mark.parametrize("degree", [1, 2, 3, 4])
def test_RT_N1curl_simplex(family, degree, cell_type, datadir, cg_solver):
if cell_type == CellType.tetrahedron and degree == 4:
pytest.skip("Skip expensive test on tetrahedron")
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_vector_test(mesh, V, degree - 1, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_simplex
@pytest.mark.parametrize("family", ["Discontinuous Raviart-Thomas"])
@pytest.mark.parametrize("degree", [1, 2, 3, 4])
def test_discontinuous_RT(family, degree, cell_type, datadir, cg_solver):
if cell_type == CellType.tetrahedron and degree == 4:
pytest.skip("Skip expensive test on tetrahedron")
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_vector_test(mesh, V, degree - 1, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_simplex
@pytest.mark.parametrize("family", ["BDM", "N2curl"])
@pytest.mark.parametrize("degree", [1, 2])
def test_BDM_N2curl_simplex(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_vector_test(mesh, V, degree, cg_solver)
# Skip slowest test in complex to stop CI timing out
# @skip_if_complex
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_simplex
@pytest.mark.parametrize("family", ["BDM", "N2curl"])
@pytest.mark.parametrize("degree", [3])
def test_BDM_N2curl_simplex_highest_order(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_vector_test(mesh, V, degree, cg_solver, maxit=900, rtol=1e-5)
# Run tests on all spaces in periodic table on quadrilaterals and
# hexahedra
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_tp
@pytest.mark.parametrize("family", ["Q"])
@pytest.mark.parametrize("degree", [2, 3, 4])
def test_P_tp(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_scalar_test(mesh, V, degree, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_tp
@pytest.mark.parametrize("family", ["Q"])
@pytest.mark.parametrize("degree", [2, 3, 4])
def test_P_tp_built_in_mesh(family, degree, cell_type, datadir, cg_solver):
if cell_type == CellType.hexahedron:
mesh = create_unit_cube(MPI.COMM_WORLD, 5, 5, 5, cell_type)
elif cell_type == CellType.quadrilateral:
mesh = create_unit_square(MPI.COMM_WORLD, 5, 5, cell_type)
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_scalar_test(mesh, V, degree, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_tp
@pytest.mark.parametrize("family", ["Q"])
@pytest.mark.parametrize("degree", [2, 3, 4])
def test_vector_P_tp(family, degree, cell_type, datadir, cg_solver):
if cell_type == CellType.hexahedron and degree == 4:
pytest.skip("Skip expensive test on hexahedron")
mesh = get_mesh(cell_type, datadir)
gdim = mesh.geometry.dim
V = functionspace(mesh, (family, degree, (gdim,)))
run_vector_test(mesh, V, degree, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_quad
@pytest.mark.parametrize("family", ["DQ"])
@pytest.mark.parametrize("degree", [1, 2, 3])
def test_dP_quad(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_dg_test(mesh, V, degree, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_hex
@pytest.mark.parametrize("family", ["DQ"])
@pytest.mark.parametrize("degree", [1, 2])
def test_dP_hex(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_dg_test(mesh, V, degree, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_tp
@pytest.mark.parametrize("family", ["S"])
@pytest.mark.parametrize("degree", [2, 3, 4])
def test_S_tp(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_scalar_test(mesh, V, degree // 2, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_tp
@pytest.mark.parametrize("family", ["S"])
@pytest.mark.parametrize("degree", [2, 3, 4])
def test_S_tp_built_in_mesh(family, degree, cell_type, datadir, cg_solver):
if cell_type == CellType.hexahedron:
mesh = create_unit_cube(MPI.COMM_WORLD, 5, 5, 5, cell_type)
elif cell_type == CellType.quadrilateral:
mesh = create_unit_square(MPI.COMM_WORLD, 5, 5, cell_type)
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_scalar_test(mesh, V, degree // 2, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_tp
@pytest.mark.parametrize("family", ["S"])
@pytest.mark.parametrize("degree", [2, 3, 4])
def test_vector_S_tp(family, degree, cell_type, datadir, cg_solver):
if cell_type == CellType.hexahedron and degree == 4:
pytest.skip("Skip expensive test on hexahedron")
mesh = get_mesh(cell_type, datadir)
gdim = mesh.geometry.dim
V = functionspace(mesh, (family, degree, (gdim,)))
run_vector_test(mesh, V, degree // 2, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_quad
@pytest.mark.parametrize("family", ["DPC"])
@pytest.mark.parametrize("degree", [2, 3, 4])
def test_DPC_quad(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_dg_test(mesh, V, degree // 2, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_hex
@pytest.mark.parametrize("family", ["DPC"])
@pytest.mark.parametrize("degree", [2])
def test_DPC_hex(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_dg_test(mesh, V, degree // 2, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_quad
@pytest.mark.parametrize("family", ["RTCE", "RTCF"])
@pytest.mark.parametrize("degree", [1, 2, 3])
def test_RTC_quad(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_vector_test(mesh, V, degree - 1, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_hex
@pytest.mark.parametrize("family", ["NCE", "NCF"])
@pytest.mark.parametrize("degree", [1, 2, 3])
def test_NC_hex(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_vector_test(mesh, V, degree - 1, cg_solver, maxit=700, rtol=1e-4)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_quad
@pytest.mark.parametrize("family", ["BDMCE", "BDMCF"])
@pytest.mark.parametrize("degree", [1, 2, 3, 4])
def test_BDM_quad(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_vector_test(mesh, V, (degree - 1) // 2, cg_solver)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
@parametrize_cell_types_hex
@pytest.mark.parametrize("family", ["AAE", "AAF"])
@pytest.mark.parametrize("degree", [1, 2, 3])
def test_AA_hex(family, degree, cell_type, datadir, cg_solver):
mesh = get_mesh(cell_type, datadir)
V = functionspace(mesh, (family, degree))
run_vector_test(mesh, V, (degree - 1) // 2, cg_solver)
|