1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
# Copyright (C) 2011-2022 Garth N. Wells, Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Unit tests for the Function class"""
import importlib
from mpi4py import MPI
import cffi
import numpy as np
import pytest
import ufl
from basix.ufl import element, mixed_element
from dolfinx import default_real_type, la
from dolfinx.fem import Function, functionspace
from dolfinx.geometry import bb_tree, compute_colliding_cells, compute_collisions_points
from dolfinx.mesh import create_mesh, create_unit_cube
@pytest.fixture
def mesh():
return create_unit_cube(MPI.COMM_WORLD, 3, 3, 3)
@pytest.fixture
def V(mesh):
return functionspace(mesh, ("Lagrange", 1))
@pytest.fixture
def W(mesh):
gdim = mesh.geometry.dim
return functionspace(mesh, ("Lagrange", 1, (gdim,)))
@pytest.fixture
def Q(mesh):
gdim = mesh.geometry.dim
return functionspace(mesh, ("Lagrange", 1, (gdim, gdim)))
def test_name_argument(W):
u = Function(W)
v = Function(W, name="v")
assert u.name == "f"
assert v.name == "v"
assert str(v) == "v"
def test_copy(V):
u = Function(V)
u.interpolate(lambda x: x[0] + 2 * x[1])
v = u.copy()
assert np.allclose(u.x.array, v.x.array)
u.x.array[:] = 1
assert not np.allclose(u.x.array, v.x.array)
def test_eval(V, W, Q, mesh):
u1 = Function(V)
u2 = Function(W)
u3 = Function(Q)
def e2(x):
values = np.empty((3, x.shape[1]))
values[0] = x[0] + x[1] + x[2]
values[1] = x[0] - x[1] - x[2]
values[2] = x[0] + x[1] + x[2]
return values
def e3(x):
values = np.empty((9, x.shape[1]))
values[0] = x[0] + x[1] + x[2]
values[1] = x[0] - x[1] - x[2]
values[2] = x[0] + x[1] + x[2]
values[3] = x[0]
values[4] = x[1]
values[5] = x[2]
values[6] = -x[0]
values[7] = -x[1]
values[8] = -x[2]
return values
u1.interpolate(lambda x: x[0] + x[1] + x[2])
u2.interpolate(e2)
u3.interpolate(e3)
x0 = (mesh.geometry.x[0] + mesh.geometry.x[1]) / 2.0
tree = bb_tree(mesh, mesh.geometry.dim)
cell_candidates = compute_collisions_points(tree, x0)
cell = compute_colliding_cells(mesh, cell_candidates, x0).array
assert len(cell) > 0
first_cell = cell[0]
assert np.allclose(u3.eval(x0, first_cell)[:3], u2.eval(x0, first_cell), rtol=1e-15, atol=1e-15)
@pytest.mark.skip_in_parallel
def test_eval_manifold():
# Simple two-triangle surface in 3d
vertices = np.array(
[(0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0)],
dtype=default_real_type,
)
cells = [(0, 1, 2), (0, 1, 3)]
domain = ufl.Mesh(element("Lagrange", "triangle", 1, shape=(2,), dtype=default_real_type))
mesh = create_mesh(MPI.COMM_WORLD, cells, vertices, domain)
Q = functionspace(mesh, ("Lagrange", 1))
u = Function(Q)
u.interpolate(lambda x: x[0] + x[1])
assert np.isclose(u.eval([0.75, 0.25, 0.5], 0)[0], 1.0)
def test_interpolation_mismatch_rank0(W):
u = Function(W)
with pytest.raises(RuntimeError):
u.interpolate(lambda x: np.ones(x.shape[1]))
def test_interpolation_mismatch_rank1(W):
u = Function(W)
with pytest.raises(RuntimeError):
u.interpolate(lambda x: np.ones((2, x.shape[1])))
def test_mixed_element_interpolation():
mesh = create_unit_cube(MPI.COMM_WORLD, 3, 3, 3)
el = element("Lagrange", mesh.basix_cell(), 1, dtype=default_real_type)
V = functionspace(mesh, mixed_element([el, el]))
u = Function(V)
with pytest.raises(RuntimeError):
u.interpolate(lambda x: np.ones(2, x.shape[1]))
def test_interpolation_rank0(V):
class MyExpression:
def __init__(self):
self.t = 0.0
def eval(self, x):
return np.full(x.shape[1], self.t)
f = MyExpression()
f.t = 1.0
w = Function(V)
w.interpolate(f.eval)
assert (w.x.array[:] == 1.0).all() # /NOSONAR
num_vertices = V.mesh.topology.index_map(0).size_global
assert np.isclose(la.norm(w.x, la.Norm.l1) - num_vertices, 0)
f.t = 2.0
w.interpolate(f.eval)
assert (w.x.array[:] == 2.0).all() # /NOSONAR
def test_interpolation_rank1(W):
def f(x):
values = np.empty((3, x.shape[1]))
values[0] = 1.0
values[1] = 2.0
values[2] = 3.0
return values
w = Function(W)
w.interpolate(f)
x = w.x.array
assert x.max() == 3.0 # /NOSONAR
assert x.min() == 1.0 # /NOSONAR
num_vertices = W.mesh.topology.index_map(0).size_global
assert round(la.norm(w.x, la.Norm.l1) - 6 * num_vertices, 7) == 0
@pytest.mark.parametrize("dtype,cdtype", [(np.float32, "float"), (np.float64, "double")])
def test_cffi_expression(dtype, cdtype):
mesh = create_unit_cube(MPI.COMM_WORLD, 3, 3, 3, dtype=dtype)
V = functionspace(mesh, ("Lagrange", 1))
code_h = f"void eval({cdtype}* values, int num_points, int value_size, const {cdtype}* x);"
code_c = """
void eval(xtype* values, int num_points, int value_size, const xtype* x)
{
/* x0 + x1 */
for (int i = 0; i < num_points; ++i)
values[i] = x[i] + x[i + num_points];
}
"""
code_c = code_c.replace("xtype", cdtype)
# Build the kernel
module = "_expr_eval" + cdtype + str(MPI.COMM_WORLD.rank)
ffi = cffi.FFI()
ffi.set_source(module, code_c)
ffi.cdef(code_h)
ffi.compile()
# Import the compiled kernel
kernel_mod = importlib.import_module(module)
ffi, lib = kernel_mod.ffi, kernel_mod.lib
# Get pointer to the compiled function
eval_ptr = ffi.cast("uintptr_t", ffi.addressof(lib, "eval"))
# Handle C func address by hand
f1 = Function(V, dtype=dtype)
f1.interpolate(int(eval_ptr))
f2 = Function(V, dtype=dtype)
f2.interpolate(lambda x: x[0] + x[1])
f1.x.array[:] -= f2.x.array
assert la.norm(f1.x) < 1.0e-12
def test_interpolation_function(mesh):
V = functionspace(mesh, ("Lagrange", 1))
u = Function(V)
u.x.array[:] = 1
Vh = functionspace(mesh, ("Lagrange", 1))
uh = Function(Vh)
uh.interpolate(u)
assert np.allclose(uh.x.array, 1)
|