1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
# Copyright (C) 2011 Johan Hake
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Unit tests for the FunctionSpace class"""
from mpi4py import MPI
import numpy as np
import pytest
import basix
from basix.ufl import element, mixed_element
from dolfinx import default_real_type
from dolfinx.fem import Function, FunctionSpace, functionspace
from dolfinx.mesh import create_mesh, create_unit_cube
from ufl import Cell, Mesh, TestFunction, TrialFunction, grad
@pytest.fixture
def mesh():
return create_unit_cube(MPI.COMM_WORLD, 8, 8, 8)
@pytest.fixture
def V(mesh):
return functionspace(mesh, ("Lagrange", 1))
@pytest.fixture
def W(mesh):
gdim = mesh.geometry.dim
return functionspace(mesh, ("Lagrange", 1, (gdim,)))
@pytest.fixture
def Q(mesh):
W = element(
"Lagrange", mesh.basix_cell(), 1, shape=(mesh.geometry.dim,), dtype=default_real_type
)
V = element("Lagrange", mesh.basix_cell(), 1, dtype=default_real_type)
return functionspace(mesh, mixed_element([W, V]))
@pytest.fixture
def f(V):
return Function(V)
@pytest.fixture
def V2(f):
return f.function_space
@pytest.fixture
def g(W):
return Function(W)
@pytest.fixture
def W2(g):
return g.function_space
def test_python_interface(V, V2, W, W2, Q):
# Test Python interface of cpp generated functionspace
assert isinstance(V, FunctionSpace)
assert isinstance(W, FunctionSpace)
assert isinstance(V2, FunctionSpace)
assert isinstance(W2, FunctionSpace)
assert V.mesh.ufl_cell() == V2.mesh.ufl_cell()
assert W.mesh.ufl_cell() == W2.mesh.ufl_cell()
assert V.element == V2.element
assert W.element == W2.element
assert V.ufl_element() == V2.ufl_element()
assert W.ufl_element() == W2.ufl_element()
assert W is W2
assert V is V2
def test_component(V, W, Q):
assert not W.component()
assert not V.component()
assert W.sub(0).component()[0] == 0
assert W.sub(1).component()[0] == 1
assert Q.sub(0).component()[0] == 0
assert Q.sub(1).component()[0] == 1
def test_equality(V, V2, W, W2):
assert V == V # /NOSONAR
assert V == V2
assert W == W # /NOSONAR
assert W == W2
def test_sub(Q, W):
X = Q.sub(0)
assert W.dofmap.dof_layout.num_dofs == X.dofmap.dof_layout.num_dofs
for dim, entity_count in enumerate([4, 6, 4, 1]):
assert W.dofmap.dof_layout.num_entity_dofs(dim) == X.dofmap.dof_layout.num_entity_dofs(dim)
assert W.dofmap.dof_layout.num_entity_closure_dofs(
dim
) == X.dofmap.dof_layout.num_entity_closure_dofs(dim)
for i in range(entity_count):
assert (
len(W.dofmap.dof_layout.entity_dofs(dim, i))
== len(X.dofmap.dof_layout.entity_dofs(dim, i))
== len(X.dofmap.dof_layout.entity_dofs(dim, 0))
)
assert (
len(W.dofmap.dof_layout.entity_closure_dofs(dim, i))
== len(X.dofmap.dof_layout.entity_closure_dofs(dim, i))
== len(X.dofmap.dof_layout.entity_closure_dofs(dim, 0))
)
assert W.dofmap.dof_layout.block_size == X.dofmap.dof_layout.block_size
assert W.dofmap.bs * len(W.dofmap.cell_dofs(0)) == len(X.dofmap.cell_dofs(0))
assert W.element.num_sub_elements == X.element.num_sub_elements
assert W.element.space_dimension == X.element.space_dimension
assert W.value_shape == X.value_shape
assert W.element.interpolation_points().shape == X.element.interpolation_points().shape
assert W.element == X.element
def test_inclusion(V, Q):
assert V.contains(V)
assert not Q.contains(V)
assert Q.contains(Q)
assert Q.contains(Q.sub(0))
assert Q.contains(Q.sub(1))
assert Q.contains(Q.sub(0).sub(0))
assert Q.contains(Q.sub(0).sub(1))
assert not Q.sub(0).contains(Q)
assert Q.sub(0).contains(Q.sub(0))
assert not Q.sub(0).contains(Q.sub(1))
assert Q.sub(0).contains(Q.sub(0).sub(0))
assert Q.sub(0).contains(Q.sub(0).sub(1))
assert not Q.sub(1).contains(Q)
assert not Q.sub(1).contains(Q.sub(0))
assert Q.sub(1).contains(Q.sub(1))
assert not Q.sub(1).contains(Q.sub(0).sub(0))
assert not Q.sub(1).contains(Q.sub(0).sub(1))
assert not Q.sub(0).sub(0).contains(Q)
assert not Q.sub(0).sub(0).contains(Q.sub(0))
assert not Q.sub(0).sub(0).contains(Q.sub(1))
assert Q.sub(0).sub(0).contains(Q.sub(0).sub(0))
assert not Q.sub(0).sub(0).contains(Q.sub(0).sub(1))
def test_not_equal(W, V, W2, V2):
assert W != V
assert W2 != V2
def test_clone(W):
assert W.clone() is not W
def test_collapse(W, V):
with pytest.raises(RuntimeError):
Function(W.sub(1))
Ws = [W.sub(i).collapse() for i in range(W.num_sub_spaces)]
for Wi, _ in Ws:
assert np.allclose(Wi.dofmap.index_map.ghosts, W.dofmap.index_map.ghosts)
msh = W.mesh
cell_imap = msh.topology.index_map(msh.topology.dim)
num_cells = cell_imap.size_local + cell_imap.num_ghosts
bs = W.dofmap.index_map_bs
for c in range(num_cells):
cell_dofs = W.dofmap.cell_dofs(c)
for i, dof in enumerate(cell_dofs):
for k in range(bs):
new_dof = Ws[k][0].dofmap.cell_dofs(c)[i]
new_to_old = Ws[k][1]
assert dof * bs + k == new_to_old[new_dof]
f0 = Function(Ws[0][0])
f1 = Function(V)
assert f0.x.index_map.size_global == f1.x.index_map.size_global
def test_argument_equality(mesh, V, V2, W, W2):
"""Placed this test here because it's mainly about detecting differing
function spaces"""
mesh2 = create_unit_cube(MPI.COMM_WORLD, 8, 8, 8)
gdim = mesh2.geometry.dim
V3 = functionspace(mesh2, ("Lagrange", 1))
W3 = functionspace(mesh2, ("Lagrange", 1, (gdim,)))
for TF in (TestFunction, TrialFunction):
v = TF(V)
v2 = TF(V2)
v3 = TF(V3)
assert v == v2
assert v2 == v
assert V != V3
assert V2 != V3
assert not v == v3
assert not v2 == v3
assert v != v3
assert v2 != v3
assert v != v3
assert v2 != v3
w = TF(W)
w2 = TF(W2)
w3 = TF(W3)
assert w == w2
assert w2 == w
assert w != w3
assert w2 != w3
assert v != w
assert w != v
s1 = set((v, w))
s2 = set((v2, w2))
s3 = set((v, v2, w, w2))
assert len(s1) == 2
assert len(s2) == 2
assert len(s3) == 2
assert s1 == s2
assert s1 == s3
assert s2 == s3
# Test that the dolfinx implementation of Argument.__eq__ is
# triggered when comparing ufl expressions
assert grad(v) == grad(v2)
assert grad(v) != grad(v3)
def test_cell_mismatch(mesh):
"""Test that cell mismatch raises early enough from UFL"""
e = element("P", "triangle", 1, dtype=default_real_type)
with pytest.raises(BaseException):
functionspace(mesh, e)
@pytest.mark.skipif(default_real_type != np.float64, reason="float32 not supported yet")
def test_basix_element(V, W, Q, V2):
for V_ in (V, W, V2):
e = V_.element.basix_element
assert isinstance(
e, (basix._basixcpp.FiniteElement_float64, basix._basixcpp.FiniteElement_float32)
)
# Mixed spaces do not yet return a basix element
with pytest.raises(RuntimeError):
e = Q.element.basix_element
@pytest.mark.skip_in_parallel
def test_vector_function_space_cell_type():
"""Test that the UFL element cell of a vector function
space is correct on meshes where gdim > tdim"""
comm = MPI.COMM_WORLD
gdim = 2
# Create a mesh containing a single interval living in 2D
cell = Cell("interval")
domain = Mesh(element("Lagrange", "interval", 1, shape=(1,), dtype=default_real_type))
cells = np.array([[0, 1]], dtype=np.int64)
x = np.array([[0.0, 0.0], [1.0, 1.0]])
mesh = create_mesh(comm, cells, x, domain)
# Create functions space over mesh, and check element cell
# is correct
V = functionspace(mesh, ("Lagrange", 1, (gdim,)))
assert V.ufl_element().cell == cell
@pytest.mark.skip_in_parallel
def test_manifold_spaces():
vertices = np.array(
[(0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0)],
dtype=default_real_type,
)
cells = [(0, 1, 2), (0, 1, 3)]
domain = Mesh(element("Lagrange", "triangle", 1, shape=(2,), dtype=default_real_type))
mesh = create_mesh(MPI.COMM_WORLD, cells, vertices, domain)
gdim = mesh.geometry.dim
QV = functionspace(mesh, ("Lagrange", 1, (gdim,)))
QT = functionspace(mesh, ("Lagrange", 1, (gdim, gdim)))
u, v = Function(QV), Function(QT)
assert u.ufl_shape == (3,)
assert v.ufl_shape == (3, 3)
|