1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
# Copyright (C) 2015-2022 Garth N. Wells, Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Unit tests for the DiscreteOperator class"""
from mpi4py import MPI
import numpy as np
import pytest
import ufl
from basix.ufl import element
from dolfinx import default_real_type
from dolfinx.fem import Expression, Function, assemble_scalar, form, functionspace
from dolfinx.mesh import CellType, GhostMode, create_mesh, create_unit_cube, create_unit_square
@pytest.mark.petsc4py
class TestPETScDiscreteOperators:
@pytest.mark.skip_in_parallel
@pytest.mark.parametrize(
"mesh",
[
create_unit_square(MPI.COMM_WORLD, 11, 6, ghost_mode=GhostMode.none),
create_unit_square(MPI.COMM_WORLD, 11, 6, ghost_mode=GhostMode.shared_facet),
create_unit_cube(MPI.COMM_WORLD, 4, 3, 7, ghost_mode=GhostMode.none),
create_unit_cube(MPI.COMM_WORLD, 4, 3, 7, ghost_mode=GhostMode.shared_facet),
],
)
def test_gradient_petsc(self, mesh):
"""Test discrete gradient computation for lowest order elements."""
from petsc4py import PETSc
from dolfinx.fem.petsc import discrete_gradient
V = functionspace(mesh, ("Lagrange", 1))
W = functionspace(mesh, ("Nedelec 1st kind H(curl)", 1))
G = discrete_gradient(V, W)
assert G.getRefCount() == 1
num_edges = mesh.topology.index_map(1).size_global
m, n = G.getSize()
assert m == num_edges
assert n == mesh.topology.index_map(0).size_global
G.assemble()
assert np.isclose(G.norm(PETSc.NormType.FROBENIUS), np.sqrt(2.0 * num_edges))
G.destroy()
@pytest.mark.parametrize("p", range(1, 4))
@pytest.mark.parametrize("q", range(1, 4))
@pytest.mark.parametrize(
"cell_type",
[CellType.quadrilateral, CellType.triangle, CellType.tetrahedron, CellType.hexahedron],
)
def test_gradient_interpolation_petsc(self, cell_type, p, q):
"""Test discrete gradient computation with verification using Expression."""
from dolfinx.fem.petsc import discrete_gradient
comm = MPI.COMM_WORLD
if cell_type == CellType.triangle:
mesh = create_unit_square(
comm, 11, 6, ghost_mode=GhostMode.none, cell_type=cell_type, dtype=default_real_type
)
family0 = "Lagrange"
family1 = "Nedelec 1st kind H(curl)"
elif cell_type == CellType.quadrilateral:
mesh = create_unit_square(
comm, 11, 6, ghost_mode=GhostMode.none, cell_type=cell_type, dtype=default_real_type
)
family0 = "Q"
family1 = "RTCE"
elif cell_type == CellType.hexahedron:
mesh = create_unit_cube(
comm,
3,
3,
2,
ghost_mode=GhostMode.none,
cell_type=cell_type,
dtype=default_real_type,
)
family0 = "Q"
family1 = "NCE"
elif cell_type == CellType.tetrahedron:
mesh = create_unit_cube(
comm,
3,
2,
2,
ghost_mode=GhostMode.none,
cell_type=cell_type,
dtype=default_real_type,
)
family0 = "Lagrange"
family1 = "Nedelec 1st kind H(curl)"
V = functionspace(mesh, (family0, p))
W = functionspace(mesh, (family1, q))
G = discrete_gradient(V, W)
G.assemble()
u = Function(V)
u.interpolate(lambda x: 2 * x[0] ** p + 3 * x[1] ** p)
grad_u = Expression(ufl.grad(u), W.element.interpolation_points())
w_expr = Function(W)
w_expr.interpolate(grad_u)
# Compute global matrix vector product
w = Function(W)
G.mult(u.x.petsc_vec, w.x.petsc_vec)
w.x.scatter_forward()
atol = 100 * np.finfo(default_real_type).resolution
assert np.allclose(w_expr.x.array, w.x.array, atol=atol)
G.destroy()
@pytest.mark.parametrize("p", range(1, 4))
@pytest.mark.parametrize("q", range(1, 4))
@pytest.mark.parametrize("from_lagrange", [True, False])
@pytest.mark.parametrize(
"cell_type",
[CellType.quadrilateral, CellType.triangle, CellType.tetrahedron, CellType.hexahedron],
)
def test_interpolation_matrix_petsc(self, cell_type, p, q, from_lagrange):
"""Test that discrete interpolation matrix yields the same result as interpolation."""
from dolfinx.fem.petsc import interpolation_matrix
comm = MPI.COMM_WORLD
if cell_type == CellType.triangle:
mesh = create_unit_square(comm, 7, 5, ghost_mode=GhostMode.none, cell_type=cell_type)
lagrange = "Lagrange" if from_lagrange else "DG"
nedelec = "Nedelec 1st kind H(curl)"
elif cell_type == CellType.quadrilateral:
mesh = create_unit_square(comm, 11, 6, ghost_mode=GhostMode.none, cell_type=cell_type)
lagrange = "Q" if from_lagrange else "DQ"
nedelec = "RTCE"
elif cell_type == CellType.hexahedron:
mesh = create_unit_cube(comm, 3, 2, 1, ghost_mode=GhostMode.none, cell_type=cell_type)
lagrange = "Q" if from_lagrange else "DQ"
nedelec = "NCE"
elif cell_type == CellType.tetrahedron:
mesh = create_unit_cube(comm, 3, 2, 2, ghost_mode=GhostMode.none, cell_type=cell_type)
lagrange = "Lagrange" if from_lagrange else "DG"
nedelec = "Nedelec 1st kind H(curl)"
v_el = element(
lagrange, mesh.basix_cell(), p, shape=(mesh.geometry.dim,), dtype=default_real_type
)
s_el = element(nedelec, mesh.basix_cell(), q, dtype=default_real_type)
if from_lagrange:
el0 = v_el
el1 = s_el
else:
el0 = s_el
el1 = v_el
V = functionspace(mesh, el0)
W = functionspace(mesh, el1)
G = interpolation_matrix(V, W)
G.assemble()
u = Function(V)
def f(x):
if mesh.geometry.dim == 2:
return (x[1] ** p, x[0] ** p)
else:
return (x[0] ** p, x[2] ** p, x[1] ** p)
u.interpolate(f)
w_vec = Function(W)
w_vec.interpolate(u)
# Compute global matrix vector product
w = Function(W)
G.mult(u.x.petsc_vec, w.x.petsc_vec)
w.x.scatter_forward()
atol = 100 * np.finfo(default_real_type).resolution
assert np.allclose(w_vec.x.array, w.x.array, atol=atol)
G.destroy()
@pytest.mark.skip_in_parallel
def test_nonaffine_discrete_operator_petsc(self):
"""Check that discrete operator is consistent with normal
interpolation between non-matching maps on non-affine geometries"""
from dolfinx.fem.petsc import interpolation_matrix
points = np.array(
[
[0, 0, 0],
[1, 0, 0],
[0, 2, 0],
[1, 2, 0],
[0, 0, 3],
[1, 0, 3],
[0, 2, 3],
[1, 2, 3],
[0.5, 0, 0],
[0, 1, 0],
[0, 0, 1.5],
[1, 1, 0],
[1, 0, 1.5],
[0.5, 2, 0],
[0, 2, 1.5],
[1, 2, 1.5],
[0.5, 0, 3],
[0, 1, 3],
[1, 1, 3],
[0.5, 2, 3],
[0.5, 1, 0],
[0.5, -0.1, 1.5],
[0, 1, 1.5],
[1, 1, 1.5],
[0.5, 2, 1.5],
[0.5, 1, 3],
[0.5, 1, 1.5],
],
dtype=default_real_type,
)
cells = np.array([range(len(points))], dtype=np.int32)
cell_type = CellType.hexahedron
domain = ufl.Mesh(
element("Lagrange", cell_type.name, 2, shape=(3,), dtype=default_real_type)
)
mesh = create_mesh(MPI.COMM_WORLD, cells, points, domain)
gdim = mesh.geometry.dim
W = functionspace(mesh, ("DG", 1, (gdim,)))
V = functionspace(mesh, ("NCE", 4))
w, v = Function(W), Function(V)
w.interpolate(lambda x: x)
v.interpolate(w)
G = interpolation_matrix(W, V)
G.assemble()
# Compute global matrix vector product
v_vec = Function(V)
G.mult(w.x.petsc_vec, v_vec.x.petsc_vec)
v_vec.x.scatter_forward()
atol = 10 * np.finfo(default_real_type).resolution
assert np.allclose(v_vec.x.array, v.x.array, atol=atol)
s = assemble_scalar(form(ufl.inner(w - v, w - v) * ufl.dx))
assert np.isclose(s, 0, atol=atol)
G.destroy()
|