File: test_petsc_discrete_operators.py

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 170; xml: 55
file content (248 lines) | stat: -rw-r--r-- 8,932 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright (C) 2015-2022 Garth N. Wells, Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later
"""Unit tests for the DiscreteOperator class"""

from mpi4py import MPI

import numpy as np
import pytest

import ufl
from basix.ufl import element
from dolfinx import default_real_type
from dolfinx.fem import Expression, Function, assemble_scalar, form, functionspace
from dolfinx.mesh import CellType, GhostMode, create_mesh, create_unit_cube, create_unit_square


@pytest.mark.petsc4py
class TestPETScDiscreteOperators:
    @pytest.mark.skip_in_parallel
    @pytest.mark.parametrize(
        "mesh",
        [
            create_unit_square(MPI.COMM_WORLD, 11, 6, ghost_mode=GhostMode.none),
            create_unit_square(MPI.COMM_WORLD, 11, 6, ghost_mode=GhostMode.shared_facet),
            create_unit_cube(MPI.COMM_WORLD, 4, 3, 7, ghost_mode=GhostMode.none),
            create_unit_cube(MPI.COMM_WORLD, 4, 3, 7, ghost_mode=GhostMode.shared_facet),
        ],
    )
    def test_gradient_petsc(self, mesh):
        """Test discrete gradient computation for lowest order elements."""
        from petsc4py import PETSc

        from dolfinx.fem.petsc import discrete_gradient

        V = functionspace(mesh, ("Lagrange", 1))
        W = functionspace(mesh, ("Nedelec 1st kind H(curl)", 1))
        G = discrete_gradient(V, W)
        assert G.getRefCount() == 1
        num_edges = mesh.topology.index_map(1).size_global
        m, n = G.getSize()
        assert m == num_edges
        assert n == mesh.topology.index_map(0).size_global
        G.assemble()
        assert np.isclose(G.norm(PETSc.NormType.FROBENIUS), np.sqrt(2.0 * num_edges))
        G.destroy()

    @pytest.mark.parametrize("p", range(1, 4))
    @pytest.mark.parametrize("q", range(1, 4))
    @pytest.mark.parametrize(
        "cell_type",
        [CellType.quadrilateral, CellType.triangle, CellType.tetrahedron, CellType.hexahedron],
    )
    def test_gradient_interpolation_petsc(self, cell_type, p, q):
        """Test discrete gradient computation with verification using Expression."""
        from dolfinx.fem.petsc import discrete_gradient

        comm = MPI.COMM_WORLD
        if cell_type == CellType.triangle:
            mesh = create_unit_square(
                comm, 11, 6, ghost_mode=GhostMode.none, cell_type=cell_type, dtype=default_real_type
            )
            family0 = "Lagrange"
            family1 = "Nedelec 1st kind H(curl)"
        elif cell_type == CellType.quadrilateral:
            mesh = create_unit_square(
                comm, 11, 6, ghost_mode=GhostMode.none, cell_type=cell_type, dtype=default_real_type
            )
            family0 = "Q"
            family1 = "RTCE"
        elif cell_type == CellType.hexahedron:
            mesh = create_unit_cube(
                comm,
                3,
                3,
                2,
                ghost_mode=GhostMode.none,
                cell_type=cell_type,
                dtype=default_real_type,
            )
            family0 = "Q"
            family1 = "NCE"
        elif cell_type == CellType.tetrahedron:
            mesh = create_unit_cube(
                comm,
                3,
                2,
                2,
                ghost_mode=GhostMode.none,
                cell_type=cell_type,
                dtype=default_real_type,
            )
            family0 = "Lagrange"
            family1 = "Nedelec 1st kind H(curl)"

        V = functionspace(mesh, (family0, p))
        W = functionspace(mesh, (family1, q))
        G = discrete_gradient(V, W)
        G.assemble()

        u = Function(V)
        u.interpolate(lambda x: 2 * x[0] ** p + 3 * x[1] ** p)

        grad_u = Expression(ufl.grad(u), W.element.interpolation_points())
        w_expr = Function(W)
        w_expr.interpolate(grad_u)

        # Compute global matrix vector product
        w = Function(W)
        G.mult(u.x.petsc_vec, w.x.petsc_vec)
        w.x.scatter_forward()

        atol = 100 * np.finfo(default_real_type).resolution
        assert np.allclose(w_expr.x.array, w.x.array, atol=atol)
        G.destroy()

    @pytest.mark.parametrize("p", range(1, 4))
    @pytest.mark.parametrize("q", range(1, 4))
    @pytest.mark.parametrize("from_lagrange", [True, False])
    @pytest.mark.parametrize(
        "cell_type",
        [CellType.quadrilateral, CellType.triangle, CellType.tetrahedron, CellType.hexahedron],
    )
    def test_interpolation_matrix_petsc(self, cell_type, p, q, from_lagrange):
        """Test that discrete interpolation matrix yields the same result as interpolation."""
        from dolfinx.fem.petsc import interpolation_matrix

        comm = MPI.COMM_WORLD
        if cell_type == CellType.triangle:
            mesh = create_unit_square(comm, 7, 5, ghost_mode=GhostMode.none, cell_type=cell_type)
            lagrange = "Lagrange" if from_lagrange else "DG"
            nedelec = "Nedelec 1st kind H(curl)"
        elif cell_type == CellType.quadrilateral:
            mesh = create_unit_square(comm, 11, 6, ghost_mode=GhostMode.none, cell_type=cell_type)
            lagrange = "Q" if from_lagrange else "DQ"
            nedelec = "RTCE"
        elif cell_type == CellType.hexahedron:
            mesh = create_unit_cube(comm, 3, 2, 1, ghost_mode=GhostMode.none, cell_type=cell_type)
            lagrange = "Q" if from_lagrange else "DQ"
            nedelec = "NCE"
        elif cell_type == CellType.tetrahedron:
            mesh = create_unit_cube(comm, 3, 2, 2, ghost_mode=GhostMode.none, cell_type=cell_type)
            lagrange = "Lagrange" if from_lagrange else "DG"
            nedelec = "Nedelec 1st kind H(curl)"
        v_el = element(
            lagrange, mesh.basix_cell(), p, shape=(mesh.geometry.dim,), dtype=default_real_type
        )
        s_el = element(nedelec, mesh.basix_cell(), q, dtype=default_real_type)
        if from_lagrange:
            el0 = v_el
            el1 = s_el
        else:
            el0 = s_el
            el1 = v_el

        V = functionspace(mesh, el0)
        W = functionspace(mesh, el1)
        G = interpolation_matrix(V, W)
        G.assemble()

        u = Function(V)

        def f(x):
            if mesh.geometry.dim == 2:
                return (x[1] ** p, x[0] ** p)
            else:
                return (x[0] ** p, x[2] ** p, x[1] ** p)

        u.interpolate(f)
        w_vec = Function(W)
        w_vec.interpolate(u)

        # Compute global matrix vector product
        w = Function(W)
        G.mult(u.x.petsc_vec, w.x.petsc_vec)
        w.x.scatter_forward()

        atol = 100 * np.finfo(default_real_type).resolution
        assert np.allclose(w_vec.x.array, w.x.array, atol=atol)
        G.destroy()

    @pytest.mark.skip_in_parallel
    def test_nonaffine_discrete_operator_petsc(self):
        """Check that discrete operator is consistent with normal
        interpolation between non-matching maps on non-affine geometries"""
        from dolfinx.fem.petsc import interpolation_matrix

        points = np.array(
            [
                [0, 0, 0],
                [1, 0, 0],
                [0, 2, 0],
                [1, 2, 0],
                [0, 0, 3],
                [1, 0, 3],
                [0, 2, 3],
                [1, 2, 3],
                [0.5, 0, 0],
                [0, 1, 0],
                [0, 0, 1.5],
                [1, 1, 0],
                [1, 0, 1.5],
                [0.5, 2, 0],
                [0, 2, 1.5],
                [1, 2, 1.5],
                [0.5, 0, 3],
                [0, 1, 3],
                [1, 1, 3],
                [0.5, 2, 3],
                [0.5, 1, 0],
                [0.5, -0.1, 1.5],
                [0, 1, 1.5],
                [1, 1, 1.5],
                [0.5, 2, 1.5],
                [0.5, 1, 3],
                [0.5, 1, 1.5],
            ],
            dtype=default_real_type,
        )

        cells = np.array([range(len(points))], dtype=np.int32)
        cell_type = CellType.hexahedron
        domain = ufl.Mesh(
            element("Lagrange", cell_type.name, 2, shape=(3,), dtype=default_real_type)
        )
        mesh = create_mesh(MPI.COMM_WORLD, cells, points, domain)
        gdim = mesh.geometry.dim
        W = functionspace(mesh, ("DG", 1, (gdim,)))
        V = functionspace(mesh, ("NCE", 4))
        w, v = Function(W), Function(V)
        w.interpolate(lambda x: x)
        v.interpolate(w)

        G = interpolation_matrix(W, V)
        G.assemble()

        # Compute global matrix vector product
        v_vec = Function(V)
        G.mult(w.x.petsc_vec, v_vec.x.petsc_vec)
        v_vec.x.scatter_forward()
        atol = 10 * np.finfo(default_real_type).resolution
        assert np.allclose(v_vec.x.array, v.x.array, atol=atol)

        s = assemble_scalar(form(ufl.inner(w - v, w - v) * ufl.dx))
        assert np.isclose(s, 0, atol=atol)
        G.destroy()