File: test_quadrature_elements.py

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 170; xml: 55
file content (212 lines) | stat: -rw-r--r-- 6,816 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (C) 2023 Jorgen Dokken and Matthew Scroggs
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later

from mpi4py import MPI

import numpy as np
import pytest

import basix.ufl
import dolfinx
import ufl


@pytest.mark.parametrize("degree", range(1, 4))
def test_default(degree):
    msh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 10, 10)

    CG2_vect = dolfinx.fem.functionspace(msh, ("Lagrange", 1))
    Qe = basix.ufl.quadrature_element(msh.topology.cell_name(), degree=degree)
    Quad = dolfinx.fem.functionspace(msh, Qe)

    u = dolfinx.fem.Function(Quad)
    v = ufl.TrialFunction(CG2_vect)

    dx_m = ufl.Measure(
        "dx", domain=msh, metadata={"quadrature_degree": 1, "quadrature_scheme": "default"}
    )
    ds = ufl.Measure("ds", domain=msh)

    residual = u * v * dx_m
    vol = dolfinx.fem.form(residual)
    residual = v * ds
    surf = dolfinx.fem.form(residual)

    residual = u * v * dx_m + v * ds
    vol_surf = dolfinx.fem.form(residual)

    vol_v = dolfinx.fem.assemble_vector(vol)
    sur_v = dolfinx.fem.assemble_vector(surf)

    vol_surf = dolfinx.fem.assemble_vector(vol_surf)

    assert np.allclose(vol_v.array + sur_v.array, vol_surf.array)


def test_points_and_weights():
    msh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 10, 10)

    CG2_vect = dolfinx.fem.functionspace(msh, ("Lagrange", 1))
    Qe = basix.ufl.quadrature_element(
        msh.topology.cell_name(),
        value_shape=(),
        points=np.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1 / 3, 1 / 3]]),
        weights=np.array([0.2, 0.2, 0.2, 0.4]),
    )
    Quad = dolfinx.fem.functionspace(msh, Qe)

    u = dolfinx.fem.Function(Quad)
    v = ufl.TrialFunction(CG2_vect)

    dx_m = ufl.Measure(
        "dx", domain=msh, metadata={"quadrature_degree": 1, "quadrature_scheme": "default"}
    )
    ds = ufl.Measure("ds", domain=msh)

    residual = u * v * dx_m
    vol = dolfinx.fem.form(residual)
    residual = v * ds
    surf = dolfinx.fem.form(residual)

    residual = u * v * dx_m + v * ds
    vol_surf = dolfinx.fem.form(residual)

    vol_v = dolfinx.fem.assemble_vector(vol)
    sur_v = dolfinx.fem.assemble_vector(surf)

    vol_surf = dolfinx.fem.assemble_vector(vol_surf)

    assert np.allclose(vol_v.array + sur_v.array, vol_surf.array)


@pytest.mark.parametrize("degree", range(1, 5))
def test_interpolation(degree):
    msh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 10, 10)

    e = basix.ufl.quadrature_element(msh.topology.cell_name(), degree=degree)
    space = dolfinx.fem.functionspace(msh, e)
    p4 = dolfinx.fem.functionspace(msh, ("Lagrange", 4))

    f_p4 = dolfinx.fem.Function(p4)
    f_p4.interpolate(lambda x: x[0] ** 4)

    f = dolfinx.fem.Function(space)
    f.interpolate(lambda x: x[0] ** 4)

    diff = dolfinx.fem.form(ufl.inner(f - f_p4, f - f_p4) * ufl.dx)

    error = dolfinx.fem.assemble_scalar(diff)

    assert np.isclose(error, 0)


@pytest.mark.parametrize("degree", range(1, 5))
def test_interpolation_blocked(degree):
    msh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 10, 10)

    e = basix.ufl.quadrature_element(msh.topology.cell_name(), value_shape=(2,), degree=degree)
    space = dolfinx.fem.functionspace(msh, e)
    p4 = dolfinx.fem.functionspace(msh, ("Lagrange", 4, (2,)))

    f_p4 = dolfinx.fem.Function(p4)
    f_p4.interpolate(lambda x: ([x[1] ** 4, x[0] ** 3]))

    f = dolfinx.fem.Function(space)
    f.interpolate(lambda x: ([x[1] ** 4, x[0] ** 3]))

    diff = dolfinx.fem.form(ufl.inner(f - f_p4, f - f_p4) * ufl.dx)

    error = dolfinx.fem.assemble_scalar(diff)

    assert np.isclose(error, 0)


def extract_diagonal(mat):
    num_rows = mat._cpp_object.index_map(0).size_local
    num_cols = mat._cpp_object.index_map(1).size_local
    assert num_rows == num_cols, "Matrix must be square"
    bs = mat.block_size[0]
    diag = np.empty(num_rows * bs, dtype=mat.data.dtype)
    for row, (start, end) in enumerate(zip(mat.indptr[:-1], mat.indptr[1:])):
        for i in range(start, end):
            if mat.indices[i] == row:
                for block in range(bs):
                    diag[bs * row + block] = mat.data[bs**2 * i + (bs + 1) * block]
    return diag


@pytest.mark.parametrize("degree", range(1, 4))
@pytest.mark.parametrize("shape", [(), (1,), (2,), (3,), (4,), (2, 2), (3, 3)])
def test_vector_element(shape, degree):
    """
    Compare assembly into a vector with quadrature elements with the diagonal of
    an assembled mass matrix with the same quadrature element.
    """
    msh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 10, 10)

    dx_m = ufl.Measure(
        "dx",
        domain=msh,
        metadata={"quadrature_degree": degree, "quadrature_scheme": "default"},
    )

    Qe = basix.ufl.quadrature_element(
        msh.topology.cell_name(), value_shape=shape, scheme="default", degree=degree
    )
    Quad = dolfinx.fem.functionspace(msh, Qe)
    q_ = ufl.TestFunction(Quad)
    dq = ufl.TrialFunction(Quad)
    one = dolfinx.fem.Function(Quad)
    one.x.array[:] = 1.0
    mass_L_form = dolfinx.fem.form(ufl.inner(one, q_) * dx_m)
    mass_v = dolfinx.fem.assemble_vector(mass_L_form)
    mass_v.scatter_reverse(dolfinx.la.InsertMode.add)
    mass_v.scatter_forward()
    mass_a_form = dolfinx.fem.form(ufl.inner(dq, q_) * dx_m)
    mass_A = dolfinx.fem.assemble_matrix(mass_a_form)
    mass_A.scatter_reverse()
    num_owned_dofs = Quad.dofmap.index_map.size_local * Quad.dofmap.index_map_bs
    assert np.allclose(extract_diagonal(mass_A), mass_v.array[:num_owned_dofs])


@pytest.mark.parametrize("degree", range(1, 4))
def test_quadrature_assembly(degree):
    """
    Test quadrature element against assembly with spatial coordinate and a fixed quadrature rule
    """
    msh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 5, 7)
    dx_m = ufl.Measure(
        "dx",
        domain=msh,
        metadata={"quadrature_degree": degree, "quadrature_scheme": "default"},
    )

    Qe = basix.ufl.quadrature_element(
        msh.topology.cell_name(), value_shape=(), scheme="default", degree=degree
    )
    Quad = dolfinx.fem.functionspace(msh, Qe)

    V = dolfinx.fem.functionspace(msh, ("Lagrange", 1))
    v = ufl.TestFunction(V)

    def f(x):
        return 1 + x[0] + x[1] ** degree

    q = dolfinx.fem.Function(Quad)
    q.interpolate(f)

    L = ufl.inner(q, v) * dx_m
    b = dolfinx.fem.assemble_vector(dolfinx.fem.form(L))
    b.scatter_reverse(dolfinx.la.InsertMode.add)
    b.scatter_forward()

    x = ufl.SpatialCoordinate(msh)
    L_ref = ufl.inner(f(x), v) * dx_m
    b_ref = dolfinx.fem.assemble_vector(dolfinx.fem.form(L_ref))
    b_ref.scatter_reverse(dolfinx.la.InsertMode.add)
    b_ref.scatter_forward()

    np.testing.assert_allclose(b.array, b_ref.array)