File: test_symmetry.py

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-10
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 170; xml: 55
file content (187 lines) | stat: -rw-r--r-- 6,127 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright (C) 2021 Matthew W. Scroggs and Jack Hale
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later
"""Test that matrices are symmetric."""

from mpi4py import MPI

import numpy as np
import pytest

import basix
import dolfinx
import ufl
from basix.ufl import element, mixed_element
from dolfinx.fem import form, functionspace
from dolfinx.mesh import CellType, create_unit_cube, create_unit_square
from ufl import grad, inner


def check_symmetry(A, tol):
    Ad = A.to_dense()
    assert np.allclose(Ad, Ad.T, atol=tol)


def run_symmetry_test(cell_type, e, form_f):
    dtype = np.float64

    if cell_type == CellType.triangle or cell_type == CellType.quadrilateral:
        mesh = create_unit_square(MPI.COMM_WORLD, 2, 2, cell_type, dtype=dtype)
    else:
        mesh = create_unit_cube(MPI.COMM_WORLD, 2, 2, 2, cell_type, dtype=dtype)

    space = functionspace(mesh, e)
    u = ufl.TrialFunction(space)
    v = ufl.TestFunction(space)
    f = form(form_f(u, v), dtype=dtype)

    A = dolfinx.fem.assemble_matrix(f)
    A.scatter_reverse()
    tol = np.sqrt(np.finfo(dtype).eps)
    check_symmetry(A, tol)


parametrize_elements = pytest.mark.parametrize(
    "cell_type, family",
    [
        (CellType.triangle, "Lagrange"),
        (CellType.triangle, "N1curl"),
        (CellType.triangle, "RT"),
        (CellType.triangle, "Regge"),
        (CellType.quadrilateral, "Lagrange"),
        (CellType.quadrilateral, "RTCE"),
        (CellType.quadrilateral, "RTCF"),
        (CellType.tetrahedron, "Lagrange"),
        (CellType.tetrahedron, "N1curl"),
        (CellType.tetrahedron, "RT"),
        (CellType.tetrahedron, "Regge"),
        (CellType.hexahedron, "Lagrange"),
        (CellType.hexahedron, "NCE"),
        (CellType.hexahedron, "NCF"),
    ],
)
parametrize_lagrange_elements = pytest.mark.parametrize(
    "cell_type, family",
    [
        (CellType.triangle, "Lagrange"),
        (CellType.quadrilateral, "Lagrange"),
        (CellType.tetrahedron, "Lagrange"),
        (CellType.hexahedron, "Lagrange"),
    ],
)


@pytest.mark.skip_in_parallel
@parametrize_elements
@pytest.mark.parametrize("order", range(1, 2))
def test_mass_matrix_dx(cell_type, family, order):
    run_symmetry_test(cell_type, (family, order), lambda u, v: inner(u, v) * ufl.dx)


@pytest.mark.skip_in_parallel
@parametrize_lagrange_elements
@pytest.mark.parametrize("order", range(1, 2))
def test_stiffness_matrix_dx(cell_type, family, order):
    run_symmetry_test(cell_type, (family, order), lambda u, v: inner(grad(u), grad(v)) * ufl.dx)


@pytest.mark.skip_in_parallel
@parametrize_elements
@pytest.mark.parametrize("order", range(1, 2))
def test_mass_matrix_ds(cell_type, family, order):
    run_symmetry_test(cell_type, (family, order), lambda u, v: inner(u, v) * ufl.ds)


@pytest.mark.skip_in_parallel
@parametrize_lagrange_elements
@pytest.mark.parametrize("order", range(1, 2))
def test_stiffness_matrix_ds(cell_type, family, order):
    run_symmetry_test(cell_type, (family, order), lambda u, v: inner(grad(u), grad(v)) * ufl.ds)


@pytest.mark.skip_in_parallel
@parametrize_elements
@pytest.mark.parametrize("order", range(1, 2))
@pytest.mark.parametrize("sign", ["+", "-"])
def test_mass_matrix_dS(cell_type, family, order, sign):
    run_symmetry_test(cell_type, (family, order), lambda u, v: inner(u, v)(sign) * ufl.dS)


@pytest.mark.skip_in_parallel
@parametrize_lagrange_elements
@pytest.mark.parametrize("order", range(1, 2))
@pytest.mark.parametrize("sign", ["+", "-"])
def test_stiffness_matrix_dS(cell_type, family, order, sign):
    run_symmetry_test(
        cell_type, (family, order), lambda u, v: inner(grad(u), grad(v))(sign) * ufl.dS
    )


@pytest.mark.skip_in_parallel
@pytest.mark.parametrize(
    "cell_type",
    [CellType.triangle, CellType.quadrilateral, CellType.tetrahedron, CellType.hexahedron],
)
@pytest.mark.parametrize("sign", ["+", "-"])
@pytest.mark.parametrize("order", range(1, 2))
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_mixed_element_form(cell_type, sign, order, dtype):
    if cell_type == CellType.triangle or cell_type == CellType.quadrilateral:
        mesh = create_unit_square(MPI.COMM_WORLD, 2, 2, cell_type, dtype=dtype)
    else:
        mesh = create_unit_cube(MPI.COMM_WORLD, 2, 2, 2, cell_type, dtype=dtype)

    U_el = mixed_element(
        [
            element(basix.ElementFamily.P, cell_type.name, order, dtype=dtype),
            element(basix.ElementFamily.N1E, cell_type.name, order, dtype=dtype),
        ]
    )

    U = functionspace(mesh, U_el)
    u, p = ufl.TrialFunctions(U)
    v, q = ufl.TestFunctions(U)
    f = form(inner(u, v) * ufl.dx + inner(p, q)(sign) * ufl.dS, dtype=dtype)

    A = dolfinx.fem.assemble_matrix(f)
    A.scatter_reverse()
    tol = np.sqrt(np.finfo(dtype).eps)
    check_symmetry(A, tol)


@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("cell_type", [CellType.triangle, CellType.quadrilateral])
@pytest.mark.parametrize("sign", ["+", "-"])
@pytest.mark.parametrize("order", range(1, 2))
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_mixed_element_vector_element_form(cell_type, sign, order, dtype):
    if cell_type == CellType.triangle or cell_type == CellType.quadrilateral:
        mesh = create_unit_square(MPI.COMM_WORLD, 2, 2, cell_type, dtype=dtype)
    else:
        mesh = create_unit_cube(MPI.COMM_WORLD, 2, 2, 2, cell_type, dtype=dtype)

    U_el = mixed_element(
        [
            element(
                basix.ElementFamily.P,
                cell_type.name,
                order,
                shape=(mesh.geometry.dim,),
                dtype=dtype,
            ),
            element(basix.ElementFamily.N1E, cell_type.name, order, dtype=dtype),
        ]
    )

    U = functionspace(mesh, U_el)
    u, p = ufl.TrialFunctions(U)
    v, q = ufl.TestFunctions(U)
    f = form(inner(u, v) * ufl.dx + inner(p, q)(sign) * ufl.dS, dtype=dtype)

    A = dolfinx.fem.assemble_matrix(f)
    A.scatter_reverse()

    tol = np.sqrt(np.finfo(dtype).eps)
    check_symmetry(A, tol)