File: test_gjk.py

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 170; xml: 55
file content (219 lines) | stat: -rw-r--r-- 8,817 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright (C) 2020 Jørgen S. Dokken and Chris N. Richardson
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later

from mpi4py import MPI

import numpy as np
import pytest
from scipy.spatial.transform import Rotation

import ufl
from basix.ufl import element
from dolfinx import geometry
from dolfinx.geometry import compute_distance_gjk
from dolfinx.mesh import create_mesh


def distance_point_to_line_3D(P1, P2, point):
    """Distance from point to line"""
    return np.linalg.norm(np.cross(P2 - P1, P1 - point)) / np.linalg.norm(P2 - P1)


def distance_point_to_plane_3D(P1, P2, P3, point):
    """Distance from point to plane"""
    return np.abs(
        np.dot(np.cross(P2 - P1, P3 - P1) / np.linalg.norm(np.cross(P2 - P1, P3 - P1)), point - P2)
    )


@pytest.mark.parametrize("delta", [0.1, 1e-12, 0, -2])
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_line_point_distance(delta, dtype):
    line = np.array([[0.1, 0.2, 0.3], [0.5, 0.8, 0.7]], dtype=dtype)
    point_on_line = line[0] + 0.27 * (line[1] - line[0])
    normal = np.cross(line[0], line[1])
    point = point_on_line + delta * normal
    d = compute_distance_gjk(line, point)
    distance = np.linalg.norm(d)
    actual_distance = distance_point_to_line_3D(line[0], line[1], point)
    assert np.isclose(distance, actual_distance, atol=1e-8)


@pytest.mark.parametrize("delta", [0.1, 1e-12, 0])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_line_line_distance(delta, dtype):
    line = np.array([[-0.5, -0.7, -0.3], [1, 2, 3]], dtype=dtype)
    point_on_line = line[0] + 0.38 * (line[1] - line[0])
    normal = np.cross(line[0], line[1])
    point = point_on_line + delta * normal
    line_2 = np.array([point, [2, 5, 6]], dtype=dtype)
    distance = np.linalg.norm(compute_distance_gjk(line, line_2))
    actual_distance = distance_point_to_line_3D(line[0], line[1], line_2[0])
    assert np.isclose(distance, actual_distance, atol=1e-7)


@pytest.mark.parametrize("delta", [0.1 ** (3 * i) for i in range(6)])
@pytest.mark.parametrize("dtype", [np.float64])
def test_tri_distance(delta, dtype):
    tri_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0]], dtype=dtype)
    tri_2 = np.array([[1, delta, 0], [3, 1.2, 0], [1, 1, 0]], dtype=dtype)
    P1 = tri_1[2]
    P2 = tri_1[1]
    point = tri_2[0]
    actual_distance = distance_point_to_line_3D(P1, P2, point)
    distance = np.linalg.norm(compute_distance_gjk(tri_1, tri_2))
    assert np.isclose(distance, actual_distance, atol=1e-6)


@pytest.mark.parametrize("delta", [0.1 * 0.1 ** (3 * i) for i in range(6)])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_quad_distance2d(delta, dtype):
    quad_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]], dtype=dtype)
    quad_2 = np.array([[0, 1 + delta, 0], [2, 2, 0], [2, 4, 0], [4, 4, 0]], dtype=dtype)
    P1 = quad_1[2]
    P2 = quad_1[3]
    point = quad_2[0]
    actual_distance = distance_point_to_line_3D(P1, P2, point)
    distance = np.linalg.norm(compute_distance_gjk(quad_1, quad_2))
    assert np.isclose(distance, actual_distance, atol=1e-8)


@pytest.mark.parametrize("delta", [1 * 0.5 ** (3 * i) for i in range(7)])
def test_tetra_distance_3d(delta):
    tetra_1 = np.array([[0, 0, 0.2], [1, 0, 0.1], [0, 1, 0.3], [0, 0, 1]], dtype=np.float64)
    tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3], [0.5, 0.3, -delta]], dtype=np.float64)
    actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1], tetra_1[2], tetra_2[3])
    distance = np.linalg.norm(compute_distance_gjk(tetra_1, tetra_2))
    assert np.isclose(distance, actual_distance, atol=1e-15)


@pytest.mark.parametrize("delta", [(-1) ** i * np.sqrt(2) * 0.1 ** (3 * i) for i in range(6)])
def test_tetra_collision_3d(delta):
    tetra_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float64)
    tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3], [0.5, 0.3, -delta]], dtype=np.float64)
    actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1], tetra_1[2], tetra_2[3])
    distance = np.linalg.norm(compute_distance_gjk(tetra_1, tetra_2))
    if delta < 0:
        assert np.isclose(distance, 0, atol=1e-15)
    else:
        assert np.isclose(distance, actual_distance, atol=1e-15)


@pytest.mark.parametrize("delta", [0, -0.1, -0.49, -0.51])
def test_hex_collision_3d(delta):
    hex_1 = np.array(
        [[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]],
        dtype=np.float64,
    )
    P0 = np.array([1.5 + delta, 1.5 + delta, 0.5], dtype=np.float64)
    P1 = np.array([2, 2, 1], dtype=np.float64)
    P2 = np.array([2, 1.25, 0.25], dtype=np.float64)
    P3 = P1 + P2 - P0
    quad_1 = np.array([P0, P1, P2, P3], dtype=np.float64)
    n = np.cross(quad_1[1] - quad_1[0], quad_1[2] - quad_1[0]) / np.linalg.norm(
        np.cross(quad_1[1] - quad_1[0], quad_1[2] - quad_1[0])
    )
    quad_2 = quad_1 + n
    hex_2 = np.zeros((8, 3), dtype=np.float64)
    hex_2[:4, :] = quad_1
    hex_2[4:, :] = quad_2
    actual_distance = np.linalg.norm(np.array([1, 1, P0[2]], dtype=np.float64) - hex_2[0])
    distance = np.linalg.norm(compute_distance_gjk(hex_1, hex_2))
    if P0[0] < 1:
        assert np.isclose(distance, 0, atol=1e-15)
    else:
        assert np.isclose(distance, actual_distance, atol=1e-15)


@pytest.mark.parametrize("delta", [1e8, 1.0, 1e-6, 1e-12])
@pytest.mark.parametrize("scale", [1000.0, 1.0, 1e-4])
@pytest.mark.parametrize("dtype", [np.float64])
def test_cube_distance(delta, scale, dtype):
    cubes = [
        scale
        * np.array(
            [
                [-1, -1, -1],
                [1, -1, -1],
                [-1, 1, -1],
                [1, 1, -1],
                [-1, -1, 1],
                [1, -1, 1],
                [-1, 1, 1],
                [1, 1, 1],
            ],
            dtype=dtype,
        )
    ]

    # Rotate cube 45 degrees around z, so that an edge faces along
    # x-axis (vertical)
    r = Rotation.from_euler("z", 45, degrees=True)
    cubes.append(r.apply(cubes[0]))

    # Rotate cube around y, so that a corner faces along the x-axis
    r = Rotation.from_euler("y", np.arctan2(1.0, np.sqrt(2)))
    cubes.append(r.apply(cubes[1]))

    # Rotate cube 45 degrees around y, so that an edge faces along
    # x-axis (horizontal)
    r = Rotation.from_euler("y", 45, degrees=True)
    cubes.append(r.apply(cubes[0]))

    # Rotate scene through an arbitrary angle
    r = Rotation.from_euler("xyz", [22, 13, -47], degrees=True)

    for c0 in range(4):
        for c1 in range(4):
            dx = cubes[c0][:, 0].max() - cubes[c1][:, 0].min()
            cube0 = cubes[c0]
            # Separate cubes along x-axis by distance delta
            cube1 = cubes[c1] + np.array([dx + delta, 0, 0])
            c0rot = r.apply(cube0)
            c1rot = r.apply(cube1)
            assert c0rot.dtype == dtype
            assert c1rot.dtype == dtype
            d = compute_distance_gjk(c0rot, c1rot)
            assert d.dtype == dtype
            distance = np.linalg.norm(d)
            assert np.isclose(distance, delta)


@pytest.mark.skip_in_parallel
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_collision_2nd_order_triangle(dtype):
    points = np.array(
        [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.65, 0.65], [0.0, 0.5], [0.5, 0.0]], dtype=dtype
    )
    cells = np.array([[0, 1, 2, 3, 4, 5]])
    domain = ufl.Mesh(element("Lagrange", "triangle", 2, shape=(2,), dtype=dtype))
    mesh = create_mesh(MPI.COMM_WORLD, cells, points, domain)

    # Sample points along an interior line of the domain. The last point
    # is outside the simplex made by the vertices.
    sample_points = np.array([[0.1, 0.3, 0.0], [0.2, 0.5, 0.0], [0.6, 0.6, 0.0]])

    # Create boundingboxtree
    tree = geometry.bb_tree(mesh, mesh.geometry.dim)
    cell_candidates = geometry.compute_collisions_points(tree, sample_points)
    colliding_cells = geometry.compute_colliding_cells(mesh, cell_candidates, sample_points)
    # Check for collision
    for i in range(colliding_cells.num_nodes):
        assert len(colliding_cells.links(i)) == 1

    # Check if there is a point on the linear approximation of the
    # curved facet
    def line_through_points(p0, p1):
        return lambda x: (p1[1] - p0[1]) / (p1[0] - p0[0]) * (x - p0[0]) + p0[1]

    line_func = line_through_points(points[2], points[3])
    point = np.array([0.2, line_func(0.2), 0])

    # Point inside 2nd order geometry, outside linear approximation
    # Useful for debugging on a later stage
    # point = np.array([0.25, 0.89320760, 0])
    distance = geometry.squared_distance(mesh, mesh.topology.dim - 1, np.array([2]), point)
    assert np.isclose(distance, 0)