1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
// # Poisson equation
//
// This demo illustrates how to:
//
// * Solve a linear partial differential equation
// * Create and apply Dirichlet boundary conditions
// * Define Expressions
// * Define a FunctionSpace
//
// ## Equation and problem definition
//
// The Poisson equation is the canonical elliptic partial differential
// equation. For a domain $\Omega \subset \mathbb{R}^n$ with boundary
// $\partial \Omega = \Gamma_{D} \cup \Gamma_{N}$, the Poisson equation
// with particular boundary conditions reads:
//
// \begin{align*}
// - \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\
// u &= 0 \quad {\rm on} \ \Gamma_{D}, \\
// \nabla u \cdot n &= g \quad {\rm on} \ \Gamma_{N}. \\
// \end{align*}
//
// Here, $f$ and $g$ are input data and $n$ denotes the outward directed
// boundary normal. The most standard variational form of Poisson
// equation reads: find $u \in V$ such that
//
// $$
// a(u, v) = L(v) \quad \forall \ v \in V,
// $$
// where $V$ is a suitable function space and
//
// \begin{align*}
// a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x, \\
// L(v) &= \int_{\Omega} f v \, {\rm d} x
// + \int_{\Gamma_{N}} g v \, {\rm d} s.
// \end{align*}
//
// The expression $a(u, v)$ is the bilinear form and $L(v)$ is the
// linear form. It is assumed that all functions in $V$ satisfy the
// Dirichlet boundary conditions ($u = 0 \ {\rm on} \ \Gamma_{D}$).
//
// In this demo, we shall consider the following definitions of the
// input functions, the domain, and the boundaries:
//
// * $\Omega = [0,1] \times [0,1]$ (a unit square)
// * $\Gamma_{D} = \{(0, y) \cup (1, y) \subset \partial \Omega\}$
// (Dirichlet boundary)
// * $\Gamma_{N} = \{(x, 0) \cup (x, 1) \subset \partial \Omega\}$
// (Neumann boundary)
// * $g = \sin(5x)$ (normal derivative)
// * $f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)$ (source term)
//
//
// ## Implementation
//
// The implementation is split in two files: a file containing the
// definition of the variational forms expressed in UFL and a C++ file
// containing the actual solver.
//
// Running this demo requires the files: {download}`demo_poisson/main.cpp`,
// {download}`demo_poisson/poisson.py` and
// {download}`demo_poisson/CMakeLists.txt`.
//
// ### UFL code
//
// The UFL code is implemented in {download}`demo_poisson/poisson.py`.
// ````{admonition} UFL code implemented in Python
// :class: dropdown
// ![ufl-code]
// ````
//
// ### C++ program
//
// The main solver is implemented in the
// {download}`demo_poisson/main.cpp` file.
//
// At the top we include the DOLFINx header file and the generated
// header file "Poisson.h" containing the variational forms for the
// Poisson equation. For convenience we also include the DOLFINx
// namespace.
#include "poisson.h"
#include <basix/finite-element.h>
#include <bit>
#include <cmath>
#include <dolfinx.h>
#include <dolfinx/fem/Constant.h>
#include <dolfinx/fem/petsc.h>
#include <dolfinx/la/petsc.h>
#include <petscmat.h>
#include <petscsys.h>
#include <petscsystypes.h>
#include <utility>
#include <vector>
using namespace dolfinx;
using T = PetscScalar;
using U = typename dolfinx::scalar_value_type_t<T>;
// Then follows the definition of the coefficient functions (for $f$ and
// $g$), which are derived from the {cpp:class}`Expression` class in
// DOLFINx
// Inside the `main` function, we begin by defining a mesh of the
// domain. As the unit square is a very standard domain, we can use a
// built-in mesh provided by the {cpp:class}`UnitSquareMesh` factory. In
// order to create a mesh consisting of 32 x 32 squares with each square
// divided into two triangles, and the finite element space (specified
// in the form file) defined relative to this mesh, we do as follows:
int main(int argc, char* argv[])
{
dolfinx::init_logging(argc, argv);
PetscInitialize(&argc, &argv, nullptr, nullptr);
{
// Create mesh and function space
auto part = mesh::create_cell_partitioner(mesh::GhostMode::shared_facet);
auto mesh = std::make_shared<mesh::Mesh<U>>(
mesh::create_rectangle<U>(MPI_COMM_WORLD, {{{0.0, 0.0}, {2.0, 1.0}}},
{32, 16}, mesh::CellType::triangle, part));
auto element = basix::create_element<U>(
basix::element::family::P, basix::cell::type::triangle, 1,
basix::element::lagrange_variant::unset,
basix::element::dpc_variant::unset, false);
auto V = std::make_shared<fem::FunctionSpace<U>>(
fem::create_functionspace(mesh, element, {}));
// Next, we define the variational formulation by initializing the
// bilinear and linear forms ($a$, $L$) using the previously
// defined {cpp:class}`FunctionSpace` `V`. Then we can create the
// source and boundary flux term ($f$, $g$) and attach these to the
// linear form.
// Prepare and set Constants for the bilinear form
auto kappa = std::make_shared<fem::Constant<T>>(2.0);
auto f = std::make_shared<fem::Function<T>>(V);
auto g = std::make_shared<fem::Function<T>>(V);
// Define variational forms
auto a = std::make_shared<fem::Form<T>>(fem::create_form<T>(
*form_poisson_a, {V, V}, {}, {{"kappa", kappa}}, {}, {}));
auto L = std::make_shared<fem::Form<T>>(fem::create_form<T>(
*form_poisson_L, {V}, {{"f", f}, {"g", g}}, {}, {}, {}));
// Now, the Dirichlet boundary condition ($u = 0$) can be created
// using the class {cpp:class}`DirichletBC`. A
// {cpp:class}`DirichletBC` takes two arguments: the value of the
// boundary condition, and the part of the boundary on which the
// condition applies. In our example, the value of the boundary
// condition (0.0) can represented using a {cpp:class}`Function`,
// and the Dirichlet boundary is defined by the indices of degrees
// of freedom to which the boundary condition applies. The
// definition of the Dirichlet boundary condition then looks as
// follows:
// Define boundary condition
auto facets = mesh::locate_entities_boundary(
*mesh, 1,
[](auto x)
{
using U = typename decltype(x)::value_type;
constexpr U eps = 1.0e-8;
std::vector<std::int8_t> marker(x.extent(1), false);
for (std::size_t p = 0; p < x.extent(1); ++p)
{
auto x0 = x(0, p);
if (std::abs(x0) < eps or std::abs(x0 - 2) < eps)
marker[p] = true;
}
return marker;
});
const auto bdofs = fem::locate_dofs_topological(
*V->mesh()->topology_mutable(), *V->dofmap(), 1, facets);
auto bc = std::make_shared<const fem::DirichletBC<T>>(0.0, bdofs, V);
f->interpolate(
[](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
{
std::vector<T> f;
for (std::size_t p = 0; p < x.extent(1); ++p)
{
auto dx = (x(0, p) - 0.5) * (x(0, p) - 0.5);
auto dy = (x(1, p) - 0.5) * (x(1, p) - 0.5);
f.push_back(10 * std::exp(-(dx + dy) / 0.02));
}
return {f, {f.size()}};
});
g->interpolate(
[](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
{
std::vector<T> f;
for (std::size_t p = 0; p < x.extent(1); ++p)
f.push_back(std::sin(5 * x(0, p)));
return {f, {f.size()}};
});
// Now, we have specified the variational forms and can consider
// the solution of the variational problem. First, we need to
// define a {cpp:class}`Function` `u` to store the solution. (Upon
// initialization, it is simply set to the zero function.) Next, we
// can call the `solve` function with the arguments `a == L`, `u`
// and `bc` as follows:
auto u = std::make_shared<fem::Function<T>>(V);
auto A = la::petsc::Matrix(fem::petsc::create_matrix(*a), false);
la::Vector<T> b(L->function_spaces()[0]->dofmap()->index_map,
L->function_spaces()[0]->dofmap()->index_map_bs());
MatZeroEntries(A.mat());
fem::assemble_matrix(la::petsc::Matrix::set_block_fn(A.mat(), ADD_VALUES),
*a, {bc});
MatAssemblyBegin(A.mat(), MAT_FLUSH_ASSEMBLY);
MatAssemblyEnd(A.mat(), MAT_FLUSH_ASSEMBLY);
fem::set_diagonal<T>(la::petsc::Matrix::set_fn(A.mat(), INSERT_VALUES), *V,
{bc});
MatAssemblyBegin(A.mat(), MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A.mat(), MAT_FINAL_ASSEMBLY);
b.set(0.0);
fem::assemble_vector(b.mutable_array(), *L);
fem::apply_lifting<T, U>(b.mutable_array(), {a}, {{bc}}, {}, T(1));
b.scatter_rev(std::plus<T>());
bc->set(b.mutable_array(), std::nullopt);
la::petsc::KrylovSolver lu(MPI_COMM_WORLD);
la::petsc::options::set("ksp_type", "preonly");
la::petsc::options::set("pc_type", "lu");
lu.set_from_options();
lu.set_operator(A.mat());
la::petsc::Vector _u(la::petsc::create_vector_wrap(*u->x()), false);
la::petsc::Vector _b(la::petsc::create_vector_wrap(b), false);
lu.solve(_u.vec(), _b.vec());
// Update ghost values before output
u->x()->scatter_fwd();
// The function `u` will be modified during the call to solve. A
// {cpp:class}`Function` can be saved to a file. Here, we output
// the solution to a `VTK` file (specified using the suffix `.pvd`)
// for visualisation in an external program such as Paraview.
// Save solution in VTK format
io::VTKFile file(MPI_COMM_WORLD, "u.pvd", "w");
file.write<T>({*u}, 0.0);
#ifdef HAS_ADIOS2
// Adios2 is not well tested on big-endian systems, so skip them
if constexpr (std::endian::native != std::endian::big)
{
// Save solution in VTX format
io::VTXWriter<U> vtx(MPI_COMM_WORLD, "u.bp", {u}, "bp4");
vtx.write(0);
}
#endif
}
PetscFinalize();
return 0;
}
|