File: main.cpp

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-11
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 171; xml: 55
file content (267 lines) | stat: -rw-r--r-- 9,906 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// # Poisson equation
//
// This demo illustrates how to:
//
// * Solve a linear partial differential equation
// * Create and apply Dirichlet boundary conditions
// * Define Expressions
// * Define a FunctionSpace
//
// ## Equation and problem definition
//
// The Poisson equation is the canonical elliptic partial differential
// equation.  For a domain $\Omega \subset \mathbb{R}^n$ with boundary
// $\partial \Omega = \Gamma_{D} \cup \Gamma_{N}$, the Poisson equation
// with particular boundary conditions reads:
//
// \begin{align*}
//    - \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\
//      u &= 0 \quad {\rm on} \ \Gamma_{D}, \\
//      \nabla u \cdot n &= g \quad {\rm on} \ \Gamma_{N}. \\
// \end{align*}
//
// Here, $f$ and $g$ are input data and $n$ denotes the outward directed
// boundary normal. The most standard variational form of Poisson
// equation reads: find $u \in V$ such that
//
// $$
//    a(u, v) = L(v) \quad \forall \ v \in V,
// $$
// where $V$ is a suitable function space and
//
// \begin{align*}
//    a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x, \\
//    L(v)    &= \int_{\Omega} f v \, {\rm d} x
//    + \int_{\Gamma_{N}} g v \, {\rm d} s.
// \end{align*}
//
// The expression $a(u, v)$ is the bilinear form and $L(v)$ is the
// linear form. It is assumed that all functions in $V$ satisfy the
// Dirichlet boundary conditions ($u = 0 \ {\rm on} \ \Gamma_{D}$).
//
// In this demo, we shall consider the following definitions of the
// input functions, the domain, and the boundaries:
//
// * $\Omega = [0,1] \times [0,1]$ (a unit square)
// * $\Gamma_{D} = \{(0, y) \cup (1, y) \subset \partial \Omega\}$
// (Dirichlet boundary)
// * $\Gamma_{N} = \{(x, 0) \cup (x, 1) \subset \partial \Omega\}$
// (Neumann boundary)
// * $g = \sin(5x)$ (normal derivative)
// * $f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)$ (source term)
//
//
// ## Implementation
//
// The implementation is split in two files: a file containing the
// definition of the variational forms expressed in UFL and a C++ file
// containing the actual solver.
//
// Running this demo requires the files: {download}`demo_poisson/main.cpp`,
// {download}`demo_poisson/poisson.py` and
// {download}`demo_poisson/CMakeLists.txt`.
//
// ### UFL code
//
// The UFL code is implemented in {download}`demo_poisson/poisson.py`.
// ````{admonition} UFL code implemented in Python
// :class: dropdown
// ![ufl-code]
// ````
//
// ### C++ program
//
// The main solver is implemented in the
// {download}`demo_poisson/main.cpp` file.
//
// At the top we include the DOLFINx header file and the generated
// header file "Poisson.h" containing the variational forms for the
// Poisson equation.  For convenience we also include the DOLFINx
// namespace.

#include "poisson.h"
#include <basix/finite-element.h>
#include <bit>
#include <cmath>
#include <dolfinx.h>
#include <dolfinx/fem/Constant.h>
#include <dolfinx/fem/petsc.h>
#include <dolfinx/la/petsc.h>
#include <petscmat.h>
#include <petscsys.h>
#include <petscsystypes.h>
#include <utility>
#include <vector>

using namespace dolfinx;
using T = PetscScalar;
using U = typename dolfinx::scalar_value_type_t<T>;

// Then follows the definition of the coefficient functions (for $f$ and
// $g$), which are derived from the {cpp:class}`Expression` class in
// DOLFINx

// Inside the `main` function, we begin by defining a mesh of the
// domain. As the unit square is a very standard domain, we can use a
// built-in mesh provided by the {cpp:class}`UnitSquareMesh` factory. In
// order to create a mesh consisting of 32 x 32 squares with each square
// divided into two triangles, and the finite element space (specified
// in the form file) defined relative to this mesh, we do as follows:

int main(int argc, char* argv[])
{
  dolfinx::init_logging(argc, argv);
  PetscInitialize(&argc, &argv, nullptr, nullptr);

  {
    // Create mesh and function space
    auto part = mesh::create_cell_partitioner(mesh::GhostMode::shared_facet);
    auto mesh = std::make_shared<mesh::Mesh<U>>(
        mesh::create_rectangle<U>(MPI_COMM_WORLD, {{{0.0, 0.0}, {2.0, 1.0}}},
                                  {32, 16}, mesh::CellType::triangle, part));

    auto element = basix::create_element<U>(
        basix::element::family::P, basix::cell::type::triangle, 1,
        basix::element::lagrange_variant::unset,
        basix::element::dpc_variant::unset, false);

    auto V = std::make_shared<fem::FunctionSpace<U>>(
        fem::create_functionspace(mesh, element, {}));

    //  Next, we define the variational formulation by initializing the
    //  bilinear and linear forms ($a$, $L$) using the previously
    //  defined {cpp:class}`FunctionSpace` `V`.  Then we can create the
    //  source and boundary flux term ($f$, $g$) and attach these to the
    //  linear form.

    // Prepare and set Constants for the bilinear form
    auto kappa = std::make_shared<fem::Constant<T>>(2.0);
    auto f = std::make_shared<fem::Function<T>>(V);
    auto g = std::make_shared<fem::Function<T>>(V);

    // Define variational forms
    auto a = std::make_shared<fem::Form<T>>(fem::create_form<T>(
        *form_poisson_a, {V, V}, {}, {{"kappa", kappa}}, {}, {}));
    auto L = std::make_shared<fem::Form<T>>(fem::create_form<T>(
        *form_poisson_L, {V}, {{"f", f}, {"g", g}}, {}, {}, {}));

    //  Now, the Dirichlet boundary condition ($u = 0$) can be created
    //  using the class {cpp:class}`DirichletBC`. A
    //  {cpp:class}`DirichletBC` takes two arguments: the value of the
    //  boundary condition, and the part of the boundary on which the
    //  condition applies. In our example, the value of the boundary
    //  condition (0.0) can represented using a {cpp:class}`Function`,
    //  and the Dirichlet boundary is defined by the indices of degrees
    //  of freedom to which the boundary condition applies. The
    //  definition of the Dirichlet boundary condition then looks as
    //  follows:

    // Define boundary condition

    auto facets = mesh::locate_entities_boundary(
        *mesh, 1,
        [](auto x)
        {
          using U = typename decltype(x)::value_type;
          constexpr U eps = 1.0e-8;
          std::vector<std::int8_t> marker(x.extent(1), false);
          for (std::size_t p = 0; p < x.extent(1); ++p)
          {
            auto x0 = x(0, p);
            if (std::abs(x0) < eps or std::abs(x0 - 2) < eps)
              marker[p] = true;
          }
          return marker;
        });
    const auto bdofs = fem::locate_dofs_topological(
        *V->mesh()->topology_mutable(), *V->dofmap(), 1, facets);
    auto bc = std::make_shared<const fem::DirichletBC<T>>(0.0, bdofs, V);

    f->interpolate(
        [](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
        {
          std::vector<T> f;
          for (std::size_t p = 0; p < x.extent(1); ++p)
          {
            auto dx = (x(0, p) - 0.5) * (x(0, p) - 0.5);
            auto dy = (x(1, p) - 0.5) * (x(1, p) - 0.5);
            f.push_back(10 * std::exp(-(dx + dy) / 0.02));
          }

          return {f, {f.size()}};
        });

    g->interpolate(
        [](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
        {
          std::vector<T> f;
          for (std::size_t p = 0; p < x.extent(1); ++p)
            f.push_back(std::sin(5 * x(0, p)));
          return {f, {f.size()}};
        });

    //  Now, we have specified the variational forms and can consider
    //  the solution of the variational problem. First, we need to
    //  define a {cpp:class}`Function` `u` to store the solution. (Upon
    //  initialization, it is simply set to the zero function.) Next, we
    //  can call the `solve` function with the arguments `a == L`, `u`
    //  and `bc` as follows:

    auto u = std::make_shared<fem::Function<T>>(V);
    auto A = la::petsc::Matrix(fem::petsc::create_matrix(*a), false);
    la::Vector<T> b(L->function_spaces()[0]->dofmap()->index_map,
                    L->function_spaces()[0]->dofmap()->index_map_bs());

    MatZeroEntries(A.mat());
    fem::assemble_matrix(la::petsc::Matrix::set_block_fn(A.mat(), ADD_VALUES),
                         *a, {bc});
    MatAssemblyBegin(A.mat(), MAT_FLUSH_ASSEMBLY);
    MatAssemblyEnd(A.mat(), MAT_FLUSH_ASSEMBLY);
    fem::set_diagonal<T>(la::petsc::Matrix::set_fn(A.mat(), INSERT_VALUES), *V,
                         {bc});
    MatAssemblyBegin(A.mat(), MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(A.mat(), MAT_FINAL_ASSEMBLY);

    b.set(0.0);
    fem::assemble_vector(b.mutable_array(), *L);
    fem::apply_lifting<T, U>(b.mutable_array(), {a}, {{bc}}, {}, T(1));
    b.scatter_rev(std::plus<T>());
    bc->set(b.mutable_array(), std::nullopt);

    la::petsc::KrylovSolver lu(MPI_COMM_WORLD);
    la::petsc::options::set("ksp_type", "preonly");
    la::petsc::options::set("pc_type", "lu");
    lu.set_from_options();

    lu.set_operator(A.mat());
    la::petsc::Vector _u(la::petsc::create_vector_wrap(*u->x()), false);
    la::petsc::Vector _b(la::petsc::create_vector_wrap(b), false);
    lu.solve(_u.vec(), _b.vec());

    // Update ghost values before output
    u->x()->scatter_fwd();

    //  The function `u` will be modified during the call to solve. A
    //  {cpp:class}`Function` can be saved to a file. Here, we output
    //  the solution to a `VTK` file (specified using the suffix `.pvd`)
    //  for visualisation in an external program such as Paraview.

    // Save solution in VTK format
    io::VTKFile file(MPI_COMM_WORLD, "u.pvd", "w");
    file.write<T>({*u}, 0.0);

#ifdef HAS_ADIOS2
    // Adios2 is not well tested on big-endian systems, so skip them
    if constexpr (std::endian::native != std::endian::big)
    {
      // Save solution in VTX format
      io::VTXWriter<U> vtx(MPI_COMM_WORLD, "u.bp", {u}, "bp4");
      vtx.write(0);
    }
#endif
  }

  PetscFinalize();

  return 0;
}