1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
// Copyright (C) 2013-2022 Chris N. Richardson, Anders Logg, Garth N. Wells,
// Jørgen S. Dokken, Sarah Roggendorf
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <dolfinx/mesh/utils.h>
#include <mpi.h>
#include <span>
#include <string>
#include <vector>
namespace dolfinx::geometry
{
namespace impl_bb
{
//-----------------------------------------------------------------------------
// Compute bounding box of mesh entity. The bounding box is defined by (lower
// left corner, top right corner). Storage flattened row-major
template <std::floating_point T>
std::array<T, 6> compute_bbox_of_entity(const mesh::Mesh<T>& mesh, int dim,
std::int32_t index)
{
// Get the geometrical indices for the mesh entity
std::span<const T> xg = mesh.geometry().x();
// FIXME: return of small dynamic array is expensive
std::span<const std::int32_t> entity(&index, 1);
const std::vector<std::int32_t> vertex_indices
= mesh::entities_to_geometry(mesh, dim, entity, false);
std::array<T, 6> b;
auto b0 = std::span(b).template subspan<0, 3>();
auto b1 = std::span(b).template subspan<3, 3>();
std::copy_n(std::next(xg.begin(), 3 * vertex_indices.front()), 3, b0.begin());
std::copy_n(std::next(xg.begin(), 3 * vertex_indices.front()), 3, b1.begin());
// Compute min and max over vertices
for (std::int32_t local_vertex : vertex_indices)
{
for (std::size_t j = 0; j < 3; ++j)
{
b0[j] = std::min(b0[j], xg[3 * local_vertex + j]);
b1[j] = std::max(b1[j], xg[3 * local_vertex + j]);
}
}
return b;
}
//-----------------------------------------------------------------------------
// Compute bounding box of bounding boxes. Each bounding box is defined as a
// tuple (corners, entity_index). The corners of the bounding box is flattened
// row-major as (lower left corner, top right corner).
template <std::floating_point T>
std::array<T, 6> compute_bbox_of_bboxes(
std::span<const std::pair<std::array<T, 6>, std::int32_t>> leaf_bboxes)
{
// Compute min and max over remaining boxes
std::array<T, 6> b = leaf_bboxes.front().first;
for (auto [box, _] : leaf_bboxes)
{
std::transform(box.cbegin(), std::next(box.cbegin(), 3), b.cbegin(),
b.begin(), [](auto a, auto b) { return std::min(a, b); });
std::transform(std::next(box.cbegin(), 3), box.cend(),
std::next(b.cbegin(), 3), std::next(b.begin(), 3),
[](auto a, auto b) { return std::max(a, b); });
}
return b;
}
//------------------------------------------------------------------------------
template <std::floating_point T>
std::int32_t _build_from_leaf(
std::span<std::pair<std::array<T, 6>, std::int32_t>> leaf_bboxes,
std::vector<int>& bboxes, std::vector<T>& bbox_coordinates)
{
if (leaf_bboxes.size() == 1)
{
// Reached leaf
// Get bounding box coordinates for leaf
const auto [b, entity_index] = leaf_bboxes.front();
// Store bounding box data
bboxes.push_back(entity_index);
bboxes.push_back(entity_index);
std::copy_n(b.begin(), 6, std::back_inserter(bbox_coordinates));
return bboxes.size() / 2 - 1;
}
else
{
// Compute bounding box of all bounding boxes
std::array b = compute_bbox_of_bboxes<T>(leaf_bboxes);
// Sort bounding boxes along longest axis
std::array<T, 3> b_diff;
std::transform(std::next(b.cbegin(), 3), b.cend(), b.cbegin(),
b_diff.begin(), std::minus<T>());
const std::size_t axis = std::distance(
b_diff.begin(), std::max_element(b_diff.begin(), b_diff.end()));
auto middle = std::next(leaf_bboxes.begin(), leaf_bboxes.size() / 2);
std::nth_element(leaf_bboxes.begin(), middle, leaf_bboxes.end(),
[axis](auto& p0, auto& p1) -> bool
{
auto x0 = p0.first[axis] + p0.first[3 + axis];
auto x1 = p1.first[axis] + p1.first[3 + axis];
return x0 < x1;
});
// Split bounding boxes into two groups and call recursively
assert(!leaf_bboxes.empty());
std::size_t part = leaf_bboxes.size() / 2;
std::int32_t bbox0
= _build_from_leaf(leaf_bboxes.first(part), bboxes, bbox_coordinates);
std::int32_t bbox1 = _build_from_leaf(
leaf_bboxes.last(leaf_bboxes.size() - part), bboxes, bbox_coordinates);
// Store bounding box data. Note that root box will be added last.
bboxes.push_back(bbox0);
bboxes.push_back(bbox1);
std::copy_n(b.begin(), 6, std::back_inserter(bbox_coordinates));
return bboxes.size() / 2 - 1;
}
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::pair<std::vector<std::int32_t>, std::vector<T>> build_from_leaf(
std::vector<std::pair<std::array<T, 6>, std::int32_t>>& leaf_bboxes)
{
std::vector<std::int32_t> bboxes;
std::vector<T> bbox_coordinates;
impl_bb::_build_from_leaf<T>(leaf_bboxes, bboxes, bbox_coordinates);
return {std::move(bboxes), std::move(bbox_coordinates)};
}
//-----------------------------------------------------------------------------
template <std::floating_point T>
std::int32_t
_build_from_point(std::span<std::pair<std::array<T, 3>, std::int32_t>> points,
std::vector<std::int32_t>& bboxes,
std::vector<T>& bbox_coordinates)
{
// Reached leaf
if (points.size() == 1)
{
// Store bounding box data
// Index of entity contained in leaf
const std::int32_t c1 = points[0].second;
bboxes.push_back(c1);
bboxes.push_back(c1);
bbox_coordinates.insert(bbox_coordinates.end(), points[0].first.begin(),
points[0].first.end());
bbox_coordinates.insert(bbox_coordinates.end(), points[0].first.begin(),
points[0].first.end());
return bboxes.size() / 2 - 1;
}
// Compute bounding box of all points
auto [min, max] = std::ranges::minmax_element(points);
std::array<T, 3> b0 = min->first;
std::array<T, 3> b1 = max->first;
// Sort bounding boxes along longest axis
std::array<T, 3> b_diff;
std::ranges::transform(b1, b0, b_diff.begin(), std::minus<T>());
const std::size_t axis
= std::distance(b_diff.begin(), std::ranges::max_element(b_diff));
auto middle = std::next(points.begin(), points.size() / 2);
std::nth_element(points.begin(), middle, points.end(),
[axis](auto& p0, auto&& p1) -> bool
{ return p0.first[axis] < p1.first[axis]; });
// Split bounding boxes into two groups and call recursively
assert(!points.empty());
std::size_t part = points.size() / 2;
std::int32_t bbox0
= _build_from_point(points.first(part), bboxes, bbox_coordinates);
std::int32_t bbox1 = _build_from_point(points.last(points.size() - part),
bboxes, bbox_coordinates);
// Store bounding box data. Note that root box will be added last.
bboxes.push_back(bbox0);
bboxes.push_back(bbox1);
bbox_coordinates.insert(bbox_coordinates.end(), b0.begin(), b0.end());
bbox_coordinates.insert(bbox_coordinates.end(), b1.begin(), b1.end());
return bboxes.size() / 2 - 1;
}
//-----------------------------------------------------------------------------
} // namespace impl_bb
/// Axis-Aligned bounding box binary tree. It is used to find entities
/// in a collection (often a mesh::Mesh).
template <std::floating_point T>
class BoundingBoxTree
{
private:
static std::vector<std::int32_t> range(mesh::Topology& topology, int tdim)
{
topology.create_entities(tdim);
auto map = topology.index_map(tdim);
assert(map);
const std::int32_t num_entities = map->size_local() + map->num_ghosts();
std::vector<std::int32_t> r(num_entities);
std::iota(r.begin(), r.end(), 0);
return r;
}
public:
/// Constructor
/// @param[in] mesh Mesh for building the bounding box tree.
/// @param[in] tdim Topological dimension of the mesh entities to
/// build the bounding box tree for.
/// @param[in] entities List of entity indices (local to process) to
/// compute the bounding box for (may be empty, if none).
/// @param[in] padding Value to pad (extend) the the bounding box of
/// each entity by.
BoundingBoxTree(const mesh::Mesh<T>& mesh, int tdim,
std::span<const std::int32_t> entities, double padding = 0)
: _tdim(tdim)
{
if (tdim < 0 or tdim > mesh.topology()->dim())
{
throw std::runtime_error(
"Dimension must be non-negative and less than or "
"equal to the topological dimension of the mesh");
}
// Initialize entities of given dimension if they don't exist
mesh.topology_mutable()->create_entities(tdim);
mesh.topology_mutable()->create_connectivity(tdim, mesh.topology()->dim());
// Create bounding boxes for all mesh entities (leaves)
std::vector<std::pair<std::array<T, 6>, std::int32_t>> leaf_bboxes;
leaf_bboxes.reserve(entities.size());
for (std::int32_t e : entities)
{
std::array<T, 6> b = impl_bb::compute_bbox_of_entity(mesh, tdim, e);
std::transform(b.cbegin(), std::next(b.cbegin(), 3), b.begin(),
[padding](auto x) { return x - padding; });
std::transform(std::next(b.begin(), 3), b.end(), std::next(b.begin(), 3),
[padding](auto x) { return x + padding; });
leaf_bboxes.emplace_back(b, e);
}
// Recursively build the bounding box tree from the leaves
if (!leaf_bboxes.empty())
std::tie(_bboxes, _bbox_coordinates)
= impl_bb::build_from_leaf(leaf_bboxes);
spdlog::info("Computed bounding box tree with {} nodes for {} entities",
num_bboxes(), entities.size());
}
/// Constructor
/// @param[in] mesh The mesh for building the bounding box tree
/// @param[in] tdim The topological dimension of the mesh entities to
/// build the bounding box tree for
/// @param[in] padding Value to pad (extend) the the bounding box of
/// each entity by.
BoundingBoxTree(const mesh::Mesh<T>& mesh, int tdim, T padding = 0)
: BoundingBoxTree::BoundingBoxTree(
mesh, tdim, range(mesh.topology_mutable(), tdim), padding)
{
// Do nothing
}
/// Constructor @param[in] points Cloud of points, with associated
/// point identifier index, to build the bounding box tree around
BoundingBoxTree(std::vector<std::pair<std::array<T, 3>, std::int32_t>> points)
: _tdim(0)
{
// Recursively build the bounding box tree from the leaves
if (!points.empty())
{
_bboxes.clear();
impl_bb::_build_from_point(std::span(points), _bboxes, _bbox_coordinates);
}
spdlog::info("Computed bounding box tree with {} nodes for {} points.",
num_bboxes(), points.size());
}
/// Move constructor
BoundingBoxTree(BoundingBoxTree&& tree) = default;
/// Copy constructor
BoundingBoxTree(const BoundingBoxTree& tree) = delete;
/// Move assignment
BoundingBoxTree& operator=(BoundingBoxTree&& other) = default;
/// Copy assignment
BoundingBoxTree& operator=(const BoundingBoxTree& other) = default;
/// Destructor
~BoundingBoxTree() = default;
/// @brief Return bounding box coordinates for a given node in the
/// tree,
/// @param[in] node The bounding box node index.
/// @return Bounding box coordinates (lower_corner, upper_corner).
/// Shape is (2, 3), row-major storage.
std::array<T, 6> get_bbox(std::size_t node) const
{
std::array<T, 6> x;
std::copy_n(_bbox_coordinates.data() + 6 * node, 6, x.begin());
return x;
}
/// Compute a global bounding tree (collective on comm)
/// This can be used to find which process a point might have a
/// collision with.
/// @param[in] comm MPI Communicator for collective communication
/// @return BoundingBoxTree where each node represents a process
BoundingBoxTree create_global_tree(MPI_Comm comm) const
{
// Build tree for each rank
const int mpi_size = dolfinx::MPI::size(comm);
// Send root node coordinates to all processes
// This is to counteract the fact that a process might have 0 bounding box
// causing false positives on process collisions around (0,0,0)
constexpr T max_val = std::numeric_limits<T>::max();
std::array<T, 6> send_bbox
= {max_val, max_val, max_val, max_val, max_val, max_val};
if (num_bboxes() > 0)
std::copy_n(std::prev(_bbox_coordinates.end(), 6), 6, send_bbox.begin());
std::vector<T> recv_bbox(mpi_size * 6);
MPI_Allgather(send_bbox.data(), 6, dolfinx::MPI::mpi_type<T>(),
recv_bbox.data(), 6, dolfinx::MPI::mpi_type<T>(), comm);
std::vector<std::pair<std::array<T, 6>, std::int32_t>> _recv_bbox(mpi_size);
for (std::size_t i = 0; i < _recv_bbox.size(); ++i)
{
std::copy_n(std::next(recv_bbox.begin(), 6 * i), 6,
_recv_bbox[i].first.begin());
_recv_bbox[i].second = i;
}
auto [global_bboxes, global_coords] = impl_bb::build_from_leaf(_recv_bbox);
BoundingBoxTree global_tree(std::move(global_bboxes),
std::move(global_coords));
spdlog::info("Computed global bounding box tree with {} boxes.",
global_tree.num_bboxes());
return global_tree;
}
/// Return number of bounding boxes
std::int32_t num_bboxes() const { return _bboxes.size() / 2; }
/// Topological dimension of leaf entities
int tdim() const { return _tdim; }
/// Print out for debugging
std::string str() const
{
std::stringstream s;
tree_print(s, _bboxes.size() / 2 - 1);
return s.str();
}
/// Get bounding box child nodes.
///
/// @param[in] node The bounding box node index
/// @return The indices of the two child nodes. If @p node is a leaf
/// nodes, then the values in the returned array are equal and
/// correspond to the index of the entity that the leaf node bounds,
/// e.g. the index of the cell that it bounds.
std::array<std::int32_t, 2> bbox(std::size_t node) const
{
assert(2 * node + 1 < _bboxes.size());
return {_bboxes[2 * node], _bboxes[2 * node + 1]};
}
private:
// Constructor
BoundingBoxTree(std::vector<std::int32_t>&& bboxes,
std::vector<T>&& bbox_coords)
: _tdim(0), _bboxes(bboxes), _bbox_coordinates(bbox_coords)
{
// Do nothing
}
// Topological dimension of leaf entities
int _tdim;
// Print out recursively, for debugging
void tree_print(std::stringstream& s, std::int32_t i) const
{
s << "[";
for (std::size_t j = 0; j < 2; ++j)
{
for (std::size_t k = 0; k < 3; ++k)
s << _bbox_coordinates[6 * i + j * 3 + k] << " ";
if (j == 0)
s << "]->"
<< "[";
}
s << "]\n";
if (_bboxes[2 * i] == _bboxes[2 * i + 1])
s << "leaf containing entity (" << _bboxes[2 * i + 1] << ")";
else
{
s << "{";
tree_print(s, _bboxes[2 * i]);
s << ", \n";
tree_print(s, _bboxes[2 * i + 1]);
s << "}\n";
}
}
// List of bounding boxes (parent-child-entity relations)
std::vector<std::int32_t> _bboxes;
// List of bounding box coordinates
std::vector<T> _bbox_coordinates;
};
} // namespace dolfinx::geometry
|