File: AdjacencyList.h

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-11
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 171; xml: 55
file content (204 lines) | stat: -rw-r--r-- 6,683 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Copyright (C) 2019-2022 Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later

#pragma once

#include <cassert>
#include <concepts>
#include <cstdint>
#include <numeric>
#include <span>
#include <sstream>
#include <utility>
#include <vector>

namespace dolfinx::graph
{
/// This class provides a static adjacency list data structure. It is
/// commonly used to store directed graphs. For each node in the
/// contiguous list of nodes [0, 1, 2, ..., n) it stores the connected
/// nodes. The representation is strictly local, i.e. it is not parallel
/// aware.
template <typename T>
class AdjacencyList
{
public:
  /// Construct trivial adjacency list where each of the n nodes is
  /// connected to itself
  /// @param [in] n Number of nodes
  explicit AdjacencyList(const std::int32_t n) : _array(n), _offsets(n + 1)
  {
    std::iota(_array.begin(), _array.end(), 0);
    std::iota(_offsets.begin(), _offsets.end(), 0);
  }

  /// Construct adjacency list from arrays of data
  /// @param [in] data Adjacency array
  /// @param [in] offsets The index to the adjacency list in the data
  /// array for node i
  template <typename U, typename V>
    requires std::is_convertible_v<std::remove_cvref_t<U>, std::vector<T>>
                 and std::is_convertible_v<std::remove_cvref_t<V>,
                                           std::vector<std::int32_t>>
  AdjacencyList(U&& data, V&& offsets)
      : _array(std::forward<U>(data)), _offsets(std::forward<V>(offsets))
  {
    _array.reserve(_offsets.back());
    assert(_offsets.back() == (std::int32_t)_array.size());
  }

  /// Set all connections for all entities (T is a '2D' container, e.g.
  /// a `std::vector<<std::vector<std::size_t>>`,
  /// `std::vector<<std::set<std::size_t>>`, etc).
  /// @param [in] data Adjacency list data, where `std::next(data, i)`
  /// points to the container of edges for node `i`.
  template <typename X>
  explicit AdjacencyList(const std::vector<X>& data)
  {
    // Initialize offsets and compute total size
    _offsets.reserve(data.size() + 1);
    _offsets.push_back(0);
    for (auto& row : data)
      _offsets.push_back(_offsets.back() + row.size());

    _array.reserve(_offsets.back());
    for (auto& e : data)
      _array.insert(_array.end(), e.begin(), e.end());
  }

  /// Copy constructor
  AdjacencyList(const AdjacencyList& list) = default;

  /// Move constructor
  AdjacencyList(AdjacencyList&& list) = default;

  /// Destructor
  ~AdjacencyList() = default;

  /// Assignment operator
  AdjacencyList& operator=(const AdjacencyList& list) = default;

  /// Move assignment operator
  AdjacencyList& operator=(AdjacencyList&& list) = default;

  /// Equality operator
  /// @return True is the adjacency lists are equal
  bool operator==(const AdjacencyList& list) const
  {
    return this->_array == list._array and this->_offsets == list._offsets;
  }

  /// Get the number of nodes
  /// @return The number of nodes in the adjacency list
  std::int32_t num_nodes() const { return _offsets.size() - 1; }

  /// Number of connections for given node
  /// @param [in] node Node index
  /// @return The number of outgoing links (edges) from the node
  int num_links(std::size_t node) const
  {
    assert((node + 1) < _offsets.size());
    return _offsets[node + 1] - _offsets[node];
  }

  /// Get the links (edges) for given node
  /// @param [in] node Node index
  /// @return Array of outgoing links for the node. The length will be
  /// AdjacencyList::num_links(node).
  std::span<T> links(std::size_t node)
  {
    return std::span<T>(_array.data() + _offsets[node],
                        _offsets[node + 1] - _offsets[node]);
  }

  /// Get the links (edges) for given node (const version)
  /// @param [in] node Node index
  /// @return Array of outgoing links for the node. The length will be
  /// AdjacencyList:num_links(node).
  std::span<const T> links(std::size_t node) const
  {
    return std::span<const T>(_array.data() + _offsets[node],
                              _offsets[node + 1] - _offsets[node]);
  }

  /// Return contiguous array of links for all nodes (const version)
  const std::vector<T>& array() const { return _array; }

  /// Return contiguous array of links for all nodes
  std::vector<T>& array() { return _array; }

  /// Offset for each node in array() (const version)
  const std::vector<std::int32_t>& offsets() const { return _offsets; }

  /// Offset for each node in array()
  std::vector<std::int32_t>& offsets() { return _offsets; }

  /// Informal string representation (pretty-print)
  /// @return String representation of the adjacency list
  std::string str() const
  {
    std::stringstream s;
    s << "<AdjacencyList> with " + std::to_string(this->num_nodes()) + " nodes"
      << std::endl;
    for (std::size_t e = 0; e < _offsets.size() - 1; ++e)
    {
      s << "  " << e << ": [";
      for (auto link : this->links(e))
        s << link << " ";
      s << "]" << std::endl;
    }
    return s.str();
  }

private:
  // Connections for all entities stored as a contiguous array
  std::vector<T> _array;

  // Position of first connection for each entity (using local index)
  std::vector<std::int32_t> _offsets;
};

/// @private Deduction
template <typename T, typename U>
AdjacencyList(T, U) -> AdjacencyList<typename T::value_type>;

/// @brief Construct a constant degree (valency) adjacency list.
///
/// A constant degree graph has the same number of edges for every node.
///
/// @param [in] data Adjacency array
/// @param [in] degree The number of (outgoing) edges for each node
/// @return An adjacency list
template <typename U>
  requires requires {
    typename std::decay_t<U>::value_type;
    requires std::convertible_to<
        U, std::vector<typename std::decay_t<U>::value_type>>;
  }
AdjacencyList<typename std::decay_t<U>::value_type>
regular_adjacency_list(U&& data, int degree)
{
  if (degree == 0 and !data.empty())
  {
    throw std::runtime_error("Degree is zero but data is not empty for "
                             "constant degree AdjacencyList");
  }

  if (degree > 0 and data.size() % degree != 0)
  {
    throw std::runtime_error(
        "Incompatible data size and degree for constant degree AdjacencyList");
  }

  std::int32_t num_nodes = degree == 0 ? data.size() : data.size() / degree;
  std::vector<std::int32_t> offsets(num_nodes + 1, 0);
  for (std::size_t i = 1; i < offsets.size(); ++i)
    offsets[i] = offsets[i - 1] + degree;
  return AdjacencyList<typename std::decay_t<U>::value_type>(
      std::forward<U>(data), std::move(offsets));
}

} // namespace dolfinx::graph