1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
// Copyright (C) 2019-2022 Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#pragma once
#include <cassert>
#include <concepts>
#include <cstdint>
#include <numeric>
#include <span>
#include <sstream>
#include <utility>
#include <vector>
namespace dolfinx::graph
{
/// This class provides a static adjacency list data structure. It is
/// commonly used to store directed graphs. For each node in the
/// contiguous list of nodes [0, 1, 2, ..., n) it stores the connected
/// nodes. The representation is strictly local, i.e. it is not parallel
/// aware.
template <typename T>
class AdjacencyList
{
public:
/// Construct trivial adjacency list where each of the n nodes is
/// connected to itself
/// @param [in] n Number of nodes
explicit AdjacencyList(const std::int32_t n) : _array(n), _offsets(n + 1)
{
std::iota(_array.begin(), _array.end(), 0);
std::iota(_offsets.begin(), _offsets.end(), 0);
}
/// Construct adjacency list from arrays of data
/// @param [in] data Adjacency array
/// @param [in] offsets The index to the adjacency list in the data
/// array for node i
template <typename U, typename V>
requires std::is_convertible_v<std::remove_cvref_t<U>, std::vector<T>>
and std::is_convertible_v<std::remove_cvref_t<V>,
std::vector<std::int32_t>>
AdjacencyList(U&& data, V&& offsets)
: _array(std::forward<U>(data)), _offsets(std::forward<V>(offsets))
{
_array.reserve(_offsets.back());
assert(_offsets.back() == (std::int32_t)_array.size());
}
/// Set all connections for all entities (T is a '2D' container, e.g.
/// a `std::vector<<std::vector<std::size_t>>`,
/// `std::vector<<std::set<std::size_t>>`, etc).
/// @param [in] data Adjacency list data, where `std::next(data, i)`
/// points to the container of edges for node `i`.
template <typename X>
explicit AdjacencyList(const std::vector<X>& data)
{
// Initialize offsets and compute total size
_offsets.reserve(data.size() + 1);
_offsets.push_back(0);
for (auto& row : data)
_offsets.push_back(_offsets.back() + row.size());
_array.reserve(_offsets.back());
for (auto& e : data)
_array.insert(_array.end(), e.begin(), e.end());
}
/// Copy constructor
AdjacencyList(const AdjacencyList& list) = default;
/// Move constructor
AdjacencyList(AdjacencyList&& list) = default;
/// Destructor
~AdjacencyList() = default;
/// Assignment operator
AdjacencyList& operator=(const AdjacencyList& list) = default;
/// Move assignment operator
AdjacencyList& operator=(AdjacencyList&& list) = default;
/// Equality operator
/// @return True is the adjacency lists are equal
bool operator==(const AdjacencyList& list) const
{
return this->_array == list._array and this->_offsets == list._offsets;
}
/// Get the number of nodes
/// @return The number of nodes in the adjacency list
std::int32_t num_nodes() const { return _offsets.size() - 1; }
/// Number of connections for given node
/// @param [in] node Node index
/// @return The number of outgoing links (edges) from the node
int num_links(std::size_t node) const
{
assert((node + 1) < _offsets.size());
return _offsets[node + 1] - _offsets[node];
}
/// Get the links (edges) for given node
/// @param [in] node Node index
/// @return Array of outgoing links for the node. The length will be
/// AdjacencyList::num_links(node).
std::span<T> links(std::size_t node)
{
return std::span<T>(_array.data() + _offsets[node],
_offsets[node + 1] - _offsets[node]);
}
/// Get the links (edges) for given node (const version)
/// @param [in] node Node index
/// @return Array of outgoing links for the node. The length will be
/// AdjacencyList:num_links(node).
std::span<const T> links(std::size_t node) const
{
return std::span<const T>(_array.data() + _offsets[node],
_offsets[node + 1] - _offsets[node]);
}
/// Return contiguous array of links for all nodes (const version)
const std::vector<T>& array() const { return _array; }
/// Return contiguous array of links for all nodes
std::vector<T>& array() { return _array; }
/// Offset for each node in array() (const version)
const std::vector<std::int32_t>& offsets() const { return _offsets; }
/// Offset for each node in array()
std::vector<std::int32_t>& offsets() { return _offsets; }
/// Informal string representation (pretty-print)
/// @return String representation of the adjacency list
std::string str() const
{
std::stringstream s;
s << "<AdjacencyList> with " + std::to_string(this->num_nodes()) + " nodes"
<< std::endl;
for (std::size_t e = 0; e < _offsets.size() - 1; ++e)
{
s << " " << e << ": [";
for (auto link : this->links(e))
s << link << " ";
s << "]" << std::endl;
}
return s.str();
}
private:
// Connections for all entities stored as a contiguous array
std::vector<T> _array;
// Position of first connection for each entity (using local index)
std::vector<std::int32_t> _offsets;
};
/// @private Deduction
template <typename T, typename U>
AdjacencyList(T, U) -> AdjacencyList<typename T::value_type>;
/// @brief Construct a constant degree (valency) adjacency list.
///
/// A constant degree graph has the same number of edges for every node.
///
/// @param [in] data Adjacency array
/// @param [in] degree The number of (outgoing) edges for each node
/// @return An adjacency list
template <typename U>
requires requires {
typename std::decay_t<U>::value_type;
requires std::convertible_to<
U, std::vector<typename std::decay_t<U>::value_type>>;
}
AdjacencyList<typename std::decay_t<U>::value_type>
regular_adjacency_list(U&& data, int degree)
{
if (degree == 0 and !data.empty())
{
throw std::runtime_error("Degree is zero but data is not empty for "
"constant degree AdjacencyList");
}
if (degree > 0 and data.size() % degree != 0)
{
throw std::runtime_error(
"Incompatible data size and degree for constant degree AdjacencyList");
}
std::int32_t num_nodes = degree == 0 ? data.size() : data.size() / degree;
std::vector<std::int32_t> offsets(num_nodes + 1, 0);
for (std::size_t i = 1; i < offsets.size(); ++i)
offsets[i] = offsets[i - 1] + degree;
return AdjacencyList<typename std::decay_t<U>::value_type>(
std::forward<U>(data), std::move(offsets));
}
} // namespace dolfinx::graph
|