1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
// Copyright (C) 2005-2020 Garth N. Wells and Jørgen S. Dokken
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "VTKFile.h"
#include "cells.h"
#include "vtk_utils.h"
#include "xdmf_utils.h"
#include <algorithm>
#include <concepts>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/common/MPI.h>
#include <dolfinx/fem/DofMap.h>
#include <dolfinx/fem/FiniteElement.h>
#include <dolfinx/fem/Function.h>
#include <dolfinx/fem/FunctionSpace.h>
#include <dolfinx/mesh/Geometry.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/Topology.h>
#include <filesystem>
#include <iterator>
#include <pugixml.hpp>
#include <span>
#include <sstream>
#include <string>
using namespace dolfinx;
namespace
{
/// String suffix for real and complex components of a vector-valued
/// field
constexpr std::array field_ext = {"_real", "_imag"};
/// Return true if element is a cell-wise constant, otherwise false
template <std::floating_point T>
bool is_cellwise(const fem::FiniteElement<T>& e)
{
return e.space_dimension() / e.block_size() == 1;
}
//----------------------------------------------------------------------------
/// Get counter string to include in filename
std::string get_counter(const pugi::xml_node& node, const std::string& name)
{
// Count number of entries
const size_t n = std::distance(node.children(name.c_str()).begin(),
node.children(name.c_str()).end());
// Compute counter string
constexpr int num_digits = 6;
std::string counter = std::to_string(n);
return std::string(num_digits - counter.size(), '0').append(counter);
}
//----------------------------------------------------------------------------
/// Convert a container to a std::stringstream
template <typename T>
std::stringstream container_to_string(const T& x, int precision)
{
std::stringstream s;
s.precision(precision);
std::ranges::for_each(x, [&s](auto e) { s << e << " "; });
return s;
}
//----------------------------------------------------------------------------
void add_pvtu_mesh(pugi::xml_node& node)
{
// -- Cell data (PCellData)
pugi::xml_node cell_data_node = node.child("PCellData");
if (cell_data_node.empty())
cell_data_node = node.append_child("PCellData");
pugi::xml_node cell_array_node = cell_data_node.append_child("PDataArray");
cell_array_node.append_attribute("type") = "UInt8";
cell_array_node.append_attribute("Name") = "vtkGhostType";
pugi::xml_node cell_id_node = cell_data_node.append_child("PDataArray");
cell_id_node.append_attribute("type") = "Int64";
cell_id_node.append_attribute("Name") = "vtkOriginalCellIds";
cell_id_node.append_attribute("IdType") = "1";
// -- Point data (PPointData)
pugi::xml_node point_data_node = node.child("PPointData");
if (point_data_node.empty())
point_data_node = node.append_child("PPointData");
pugi::xml_node point_id_node = point_data_node.append_child("PDataArray");
point_id_node.append_attribute("type") = "Int64";
point_id_node.append_attribute("Name") = "vtkOriginalPointIds";
point_id_node.append_attribute("IdType") = "1";
// Ghost points
pugi::xml_node point_ghost_node = point_data_node.append_child("PDataArray");
point_ghost_node.append_attribute("type") = "UInt8";
point_ghost_node.append_attribute("Name") = "vtkGhostType";
// -- Points (PPoints)
pugi::xml_node x_data_node = node.child("PPoints");
if (x_data_node.empty())
x_data_node = node.append_child("PPoints");
pugi::xml_node data_node = x_data_node.append_child("PDataArray");
data_node.append_attribute("type") = "Float64";
data_node.append_attribute("NumberOfComponents") = "3";
}
//----------------------------------------------------------------------------
/// Add float data to a pugixml node
/// @param[in] name The name of the data array
/// @param[in] num_components An array indicating the value shape of `values`
/// @param[in] values The data array to add
/// @param[in,out] data_node The XML node to add data to
template <typename T>
void add_data_float(const std::string& name,
std::span<const std::size_t> num_components,
std::span<const T> values, pugi::xml_node& node)
{
static_assert(std::is_floating_point_v<T>, "Scalar must be a float");
constexpr int size = 8 * sizeof(T);
std::string type = std::string("Float") + std::to_string(size);
pugi::xml_node field_node = node.append_child("DataArray");
field_node.append_attribute("type") = type.c_str();
field_node.append_attribute("Name") = name.c_str();
field_node.append_attribute("format") = "ascii";
if (!num_components.empty())
field_node.append_attribute("NumberOfComponents") = num_components.front();
field_node.append_child(pugi::node_pcdata)
.set_value(container_to_string(values, 16).str().c_str());
}
//----------------------------------------------------------------------------
/// At data to a pugixml node
/// @note If `values` is complex, two data arrays will be added (one
/// real and one complex), with suffixes from `field_ext` added to the
/// name
/// @param[in] name The name of the data array
/// @param[in] num_components An array indicating the value shape of `values`
/// @param[in] values The data array to add
/// @param[in,out] data_node The XML node to add data to
template <typename T>
void add_data(const std::string& name,
std::span<const std::size_t> num_components,
std::span<const T> values, pugi::xml_node& node)
{
if constexpr (std::is_scalar_v<T>)
add_data_float(name, num_components, values, node);
else
{
using U = typename T::value_type;
std::vector<U> v(values.size());
std::ranges::transform(values, v.begin(), [](auto x) { return x.real(); });
add_data_float(name + field_ext[0], num_components, std::span<const U>(v),
node);
std::ranges::transform(values, v.begin(), [](auto x) { return x.imag(); });
add_data_float(name + field_ext[1], num_components, std::span<const U>(v),
node);
}
}
//----------------------------------------------------------------------------
/// Add mesh geometry and topology data to a pugixml node. This function
/// adds the Points and Cells nodes to the input node.
/// @param[in] x Coordinates of the points, row-major storage
/// @param[in] xshape The shape of `x`
/// @param[in] x_id Unique global index for each point
/// @param[in] x_ghost Flag indicating if a point is a owned (0) or is a
/// ghost (1)
/// @param[in] cells The mesh topology
/// @param[in] cellmap The index map for the cells
/// @param[in] celltype The cell type
/// @param[in] tdim Topological dimension of the cells
/// @param[in,out] piece_node The XML node to add data to
template <typename U>
void add_mesh(std::span<const U> x, std::array<std::size_t, 2> /*xshape*/,
std::span<const std::int64_t> x_id,
std::span<const std::uint8_t> x_ghost,
std::span<const std::int64_t> cells,
std::array<std::size_t, 2> cshape,
const common::IndexMap& cellmap, mesh::CellType celltype,
int tdim, pugi::xml_node& piece_node)
{
// -- Add geometry (points)
pugi::xml_node points_node = piece_node.append_child("Points");
pugi::xml_node x_node = points_node.append_child("DataArray");
x_node.append_attribute("type") = "Float64";
x_node.append_attribute("NumberOfComponents") = "3";
x_node.append_attribute("format") = "ascii";
x_node.append_child(pugi::node_pcdata)
.set_value(container_to_string(x, 16).str().c_str());
// -- Add topology (cells)
pugi::xml_node cells_node = piece_node.append_child("Cells");
pugi::xml_node connectivity_node = cells_node.append_child("DataArray");
connectivity_node.append_attribute("type") = "Int32";
connectivity_node.append_attribute("Name") = "connectivity";
connectivity_node.append_attribute("format") = "ascii";
{
std::stringstream ss;
std::ranges::for_each(cells, [&ss](auto& v) { ss << v << " "; });
connectivity_node.append_child(pugi::node_pcdata)
.set_value(ss.str().c_str());
}
pugi::xml_node offsets_node = cells_node.append_child("DataArray");
offsets_node.append_attribute("type") = "Int32";
offsets_node.append_attribute("Name") = "offsets";
offsets_node.append_attribute("format") = "ascii";
{
std::stringstream ss;
int num_nodes = cshape[1];
for (std::size_t i = 0; i < cshape[0]; ++i)
ss << (i + 1) * num_nodes << " ";
offsets_node.append_child(pugi::node_pcdata).set_value(ss.str().c_str());
}
pugi::xml_node type_node = cells_node.append_child("DataArray");
type_node.append_attribute("type") = "Int8";
type_node.append_attribute("Name") = "types";
type_node.append_attribute("format") = "ascii";
int vtk_celltype = io::cells::get_vtk_cell_type(celltype, tdim);
{
std::stringstream ss;
for (std::size_t c = 0; c < cshape[0]; ++c)
ss << vtk_celltype << " ";
type_node.append_child(pugi::node_pcdata).set_value(ss.str().c_str());
}
// Ghost cell markers
pugi::xml_node cells_data_node = piece_node.append_child("CellData");
pugi::xml_node ghost_cell_node = cells_data_node.append_child("DataArray");
ghost_cell_node.append_attribute("type") = "UInt8";
ghost_cell_node.append_attribute("Name") = "vtkGhostType";
ghost_cell_node.append_attribute("format") = "ascii";
ghost_cell_node.append_attribute("RangeMin") = "0";
ghost_cell_node.append_attribute("RangeMax") = "1";
{
std::stringstream ss;
for (std::int32_t c = 0; c < cellmap.size_local(); ++c)
ss << 0 << " ";
for (std::size_t c = cellmap.size_local(); c < cshape[0]; ++c)
ss << 1 << " ";
ghost_cell_node.append_child(pugi::node_pcdata).set_value(ss.str().c_str());
}
// Original cell IDs
pugi::xml_node cell_id_node = cells_data_node.append_child("DataArray");
cell_id_node.append_attribute("type") = "Int64";
cell_id_node.append_attribute("IdType") = "1";
cell_id_node.append_attribute("Name") = "vtkOriginalCellIds";
cell_id_node.append_attribute("format") = "ascii";
{
std::stringstream ss;
const std::int64_t cell_offset = cellmap.local_range()[0];
for (std::int32_t c = 0; c < cellmap.size_local(); ++c)
ss << cell_offset + c << " ";
std::ranges::for_each(cellmap.ghosts(),
[&ss](auto& idx) { ss << idx << " "; });
cell_id_node.append_child(pugi::node_pcdata).set_value(ss.str().c_str());
}
auto [min_idx, max_idx] = cellmap.local_range();
max_idx -= 1;
if (!cellmap.ghosts().empty())
{
std::span ghosts = cellmap.ghosts();
auto [min, max] = std::ranges::minmax_element(ghosts);
min_idx = std::min(min_idx, *min);
max_idx = std::max(max_idx, *max);
}
cell_id_node.append_attribute("RangeMin") = min_idx;
cell_id_node.append_attribute("RangeMax") = max_idx;
pugi::xml_node points_data_node = piece_node.append_child("PointData");
// Original point IDs
pugi::xml_node point_id_node = points_data_node.append_child("DataArray");
point_id_node.append_attribute("type") = "Int64";
point_id_node.append_attribute("IdType") = "1";
point_id_node.append_attribute("Name") = "vtkOriginalPointIds";
point_id_node.append_attribute("format") = "ascii";
{
std::stringstream ss;
std::ranges::for_each(x_id, [&ss](auto idx) { ss << idx << " "; });
point_id_node.append_child(pugi::node_pcdata).set_value(ss.str().c_str());
}
if (!x_id.empty())
{
auto [min, max] = std::ranges::minmax_element(x_id);
point_id_node.append_attribute("RangeMin") = *min;
point_id_node.append_attribute("RangeMax") = *max;
}
// Point ghosts
pugi::xml_node point_ghost_node = points_data_node.append_child("DataArray");
point_ghost_node.append_attribute("type") = "UInt8";
point_ghost_node.append_attribute("Name") = "vtkGhostType";
point_ghost_node.append_attribute("format") = "ascii";
{
std::stringstream ss;
std::ranges::for_each(x_ghost, [&ss](int ghost) { ss << ghost << " "; });
point_ghost_node.append_child(pugi::node_pcdata)
.set_value(ss.str().c_str());
}
if (!x_ghost.empty())
{
auto [min, max] = std::ranges::minmax_element(x_ghost);
point_ghost_node.append_attribute("RangeMin") = *min;
point_ghost_node.append_attribute("RangeMax") = *max;
}
}
//----------------------------------------------------------------------------
template <dolfinx::scalar T, std::floating_point U>
void write_function(
const std::vector<std::reference_wrapper<const fem::Function<T, U>>>& u,
double time, pugi::xml_document* xml_doc,
const std::filesystem::path& filename)
{
if (!xml_doc)
throw std::runtime_error("VTKFile has been closed");
if (u.empty())
return;
// Extract the first function space with pointwise data. If no
// pointwise functions, take first FunctionSpace.
auto V0 = u.front().get().function_space();
assert(V0);
for (auto& v : u)
{
auto V = v.get().function_space();
assert(V);
if (!is_cellwise(*V->element()))
{
V0 = V;
break;
}
}
// Check compatibility for all functions
auto mesh0 = V0->mesh();
assert(mesh0);
auto element0 = V0->element();
for (auto& v : u)
{
auto V = v.get().function_space();
assert(V);
// Check that functions share common mesh
assert(V->mesh());
if (V->mesh() != mesh0)
{
throw std::runtime_error(
"All Functions written to VTK file must share the same Mesh.");
}
// Check that v isn't a sub-function
if (!V->component().empty())
throw std::runtime_error("Cannot write sub-Functions to VTK file.");
auto e = V->element();
assert(e);
// Check that element uses point evaluations
if (!e->interpolation_ident())
{
throw std::runtime_error("Only Lagrange functions are supported. "
"Interpolate Functions before output.");
}
// Check that pointwise elements are the same (up to the block size)
if (!is_cellwise(*e))
{
if (*e != *element0)
{
throw std::runtime_error("All point-wise Functions written to VTK file "
"must have same element.");
}
}
}
// Get the PVD "Collection" node
pugi::xml_node xml_collections
= xml_doc->child("VTKFile").child("Collection");
assert(xml_collections);
// Compute counter string
const std::string counter_str = get_counter(xml_collections, "DataSet");
// Create a VTU XML object
pugi::xml_document xml_vtu;
pugi::xml_node vtk_node_vtu = xml_vtu.append_child("VTKFile");
vtk_node_vtu.append_attribute("type") = "UnstructuredGrid";
vtk_node_vtu.append_attribute("version") = "2.2";
pugi::xml_node grid_node_vtu = vtk_node_vtu.append_child("UnstructuredGrid");
auto topology0 = mesh0->topology();
assert(topology0);
// Build mesh data using first FunctionSpace
std::vector<U> x;
std::array<std::size_t, 2> xshape;
std::vector<std::int64_t> x_id;
std::vector<std::uint8_t> x_ghost;
std::vector<std::int64_t> cells;
std::array<std::size_t, 2> cshape;
if (is_cellwise(*V0->element()))
{
std::vector<std::int64_t> tmp;
std::tie(tmp, cshape) = io::extract_vtk_connectivity(
mesh0->geometry().dofmap(), topology0->cell_type());
cells.assign(tmp.begin(), tmp.end());
const mesh::Geometry<U>& geometry = mesh0->geometry();
x.assign(geometry.x().begin(), geometry.x().end());
xshape = {geometry.x().size() / 3, 3};
x_id = geometry.input_global_indices();
auto xmap = geometry.index_map();
assert(xmap);
x_ghost.resize(xshape[0], 0);
std::fill(std::next(x_ghost.begin(), xmap->size_local()), x_ghost.end(), 1);
}
else
{
std::tie(x, xshape, x_id, x_ghost, cells, cshape)
= io::vtk_mesh_from_space(*V0);
}
// Add "Piece" node and required metadata
pugi::xml_node piece_node = grid_node_vtu.append_child("Piece");
piece_node.append_attribute("NumberOfPoints") = xshape[0];
piece_node.append_attribute("NumberOfCells") = cshape[0];
// FIXME
mesh::CellType cell_type = topology0->cell_type();
// Add mesh data to "Piece" node
int tdim = topology0->dim();
add_mesh<U>(x, xshape, x_id, x_ghost, cells, cshape,
*topology0->index_map(tdim), cell_type, topology0->dim(),
piece_node);
// FIXME: is this actually setting the first?
// Set last scalar/vector/tensor Functions in u to be the 'active'
// (default) field(s)
constexpr std::array tensor_str = {"Scalars", "Vectors", "Tensors"};
for (auto _u : u)
{
assert(_u.get().function_space());
auto e = _u.get().function_space()->element();
assert(e);
auto data_type = is_cellwise(*e) ? "CellData" : "PointData";
if (piece_node.child(data_type).empty())
piece_node.append_child(data_type);
const int rank = _u.get().function_space()->value_shape().size();
pugi::xml_node data_node = piece_node.child(data_type);
if (data_node.attribute(tensor_str[rank]).empty())
data_node.append_attribute(tensor_str[rank]);
pugi::xml_attribute data = data_node.attribute(tensor_str[rank]);
data.set_value(_u.get().name.c_str());
}
// Add cell/point data to VTU node
for (auto _u : u)
{
auto V = _u.get().function_space();
auto e = V->element();
assert(e);
// Pad to 3D if vector/tensor is product of dimensions is smaller than
// 3**rank to ensure that we can visualize them correctly in Paraview
std::span<const std::size_t> value_shape = V->value_shape();
int rank = value_shape.size();
int num_components = std::reduce(value_shape.begin(), value_shape.end(), 1,
std::multiplies{});
if (num_components < std::pow(3, rank))
num_components = std::pow(3, rank);
// Create array to store number of (padded) components in field
std::vector<std::size_t> component_vector(int(rank > 0 ? 1 : 0));
if (rank > 0)
component_vector[0] = num_components;
if (is_cellwise(*e))
{
// -- Cell-wise data
pugi::xml_node data_node = piece_node.child("CellData");
assert(!data_node.empty());
auto dofmap = V->dofmap();
int bs = dofmap->bs();
std::vector<T> data(cshape[0] * num_components, 0);
auto u_vector = _u.get().x()->array();
for (std::size_t c = 0; c < cshape[0]; ++c)
{
auto dofs = dofmap->cell_dofs(c);
for (std::size_t i = 0; i < dofs.size(); ++i)
for (int k = 0; k < bs; ++k)
data[num_components * c + k] = u_vector[bs * dofs[i] + k];
}
add_data(_u.get().name, std::span<const std::size_t>(component_vector),
std::span<const T>(data), data_node);
}
else
{
// -- Point-wise data
pugi::xml_node data_node = piece_node.child("PointData");
assert(!data_node.empty());
// Function to pack data to 3D with 'zero' padding, typically when
// a Function is 2D
auto pad_data = [num_components](auto&& V, auto u)
{
auto dofmap = V.dofmap();
int bs = dofmap->bs();
auto map = dofmap->index_map;
int map_bs = dofmap->index_map_bs();
std::int32_t num_dofs_block
= map_bs * (map->size_local() + map->num_ghosts()) / bs;
std::vector<T> data(num_dofs_block * num_components, 0);
for (int i = 0; i < num_dofs_block; ++i)
{
std::copy_n(std::next(u.begin(), i * map_bs), map_bs,
std::next(data.begin(), i * num_components));
}
return data;
};
if (V == V0)
{
// -- Identical spaces
if (mesh0->geometry().dim() == 3)
add_data(_u.get().name,
std::span<const std::size_t>(component_vector),
_u.get().x()->array(), data_node);
else
{
// Pad with zeros and then add
auto data = pad_data(*V, _u.get().x()->array());
add_data(_u.get().name,
std::span<const std::size_t>(component_vector),
std::span<const T>(data), data_node);
}
}
else if (*e == *element0)
{
// -- Same element, possibly different dofmaps
// Get dofmaps
auto dofmap0 = V0->dofmap();
assert(dofmap0);
auto dofmap = V->dofmap();
assert(dofmap);
int bs = dofmap->bs();
// Get data on each cell
auto u_vector = _u.get().x()->array();
std::vector<T> u(u_vector.size());
for (std::size_t c = 0; c < cshape[0]; ++c)
{
std::span<const std::int32_t> dofs0 = dofmap0->cell_dofs(c);
std::span<const std::int32_t> dofs = dofmap->cell_dofs(c);
for (std::size_t i = 0; i < dofs0.size(); ++i)
{
for (int k = 0; k < bs; ++k)
{
assert(i < dofs0.size());
assert(bs * dofs0[i] + k < (int)u.size());
u[bs * dofs0[i] + k] = u_vector[bs * dofs[i] + k];
}
}
}
// Pack/add data
if (mesh0->geometry().dim() == 3)
add_data(_u.get().name,
std::span<const std::size_t>(component_vector),
std::span<const T>(u), data_node);
else
{
// Pad with zeros and then add
auto data = pad_data(*V, _u.get().x()->array());
add_data(_u.get().name,
std::span<const std::size_t>(component_vector),
std::span<const T>(data), data_node);
}
}
else
{
throw std::runtime_error(
"Elements differ, not permitted for VTK output");
}
}
}
// Create filepath for a .vtu file
auto create_vtu_path = [file_root = filename.parent_path(),
file_name = filename.stem(), counter_str](int rank)
{
std::filesystem::path vtu = file_root / file_name;
vtu += +"_p" + std::to_string(rank) + "_" + counter_str;
vtu.replace_extension("vtu");
return vtu;
};
// Save VTU XML to file
const int mpi_rank = dolfinx::MPI::rank(mesh0->comm());
std::filesystem::path vtu = create_vtu_path(mpi_rank);
if (vtu.has_parent_path())
std::filesystem::create_directories(vtu.parent_path());
xml_vtu.save_file(vtu.c_str(), " ");
// -- Create a PVTU XML object on rank 0
std::filesystem::path p_pvtu = filename.parent_path() / filename.stem();
if (mpi_rank == 0)
{
p_pvtu += counter_str;
p_pvtu.replace_extension("pvtu");
pugi::xml_document xml_pvtu;
pugi::xml_node vtk_node = xml_pvtu.append_child("VTKFile");
vtk_node.append_attribute("type") = "PUnstructuredGrid";
vtk_node.append_attribute("version") = "1.0";
pugi::xml_node grid_node = vtk_node.append_child("PUnstructuredGrid");
grid_node.append_attribute("GhostLevel") = 1;
for (auto _u : u)
{
if (auto e = _u.get().function_space()->element(); is_cellwise(*e))
{
if (grid_node.child("PCellData").empty())
grid_node.append_child("PCellData");
}
else
{
if (grid_node.child("PPointData").empty())
grid_node.append_child("PPointData");
}
}
// Add mesh metadata to PVTU object
add_pvtu_mesh(grid_node);
const int mpi_size = dolfinx::MPI::size(mesh0->comm());
for (auto _u : u)
{
auto V = _u.get().function_space();
assert(V);
auto e = V->element();
assert(e);
std::string d_type = is_cellwise(*e) ? "PCellData" : "PPointData";
pugi::xml_node data_pnode = grid_node.child(d_type.c_str());
// Pad to 3D if vector/tensor is product of dimensions is smaller than
// 3**rank to ensure that we can visualize them correctly in Paraview
std::span<const std::size_t> value_shape = V->value_shape();
int rank = value_shape.size();
int num_components = std::reduce(value_shape.begin(), value_shape.end(),
1, std::multiplies{});
if (num_components < std::pow(3, rank))
num_components = std::pow(3, rank);
auto add_field = [&](const std::string& name, int size)
{
std::string type = std::string("Float") + std::to_string(size);
pugi::xml_node data_node = data_pnode.append_child("PDataArray");
data_node.append_attribute("type") = type.c_str();
data_node.append_attribute("Name") = name.c_str();
data_node.append_attribute("NumberOfComponents") = num_components;
};
if constexpr (std::is_scalar_v<T>)
{
constexpr int size = 8 * sizeof(T);
add_field(_u.get().name, size);
}
else
{
constexpr int size = 8 * sizeof(typename T::value_type);
add_field(_u.get().name + field_ext[0], size);
add_field(_u.get().name + field_ext[1], size);
}
}
// Add data for each process to the PVTU object
for (int r = 0; r < mpi_size; ++r)
{
std::filesystem::path vtu = create_vtu_path(r);
pugi::xml_node piece_node = grid_node.append_child("Piece");
piece_node.append_attribute("Source") = vtu.filename().c_str();
}
// Write PVTU file
if (p_pvtu.has_parent_path())
std::filesystem::create_directories(p_pvtu.parent_path());
xml_pvtu.save_file(p_pvtu.c_str(), " ");
}
// Append PVD file
pugi::xml_node dataset_node = xml_collections.append_child("DataSet");
dataset_node.append_attribute("timestep") = time;
dataset_node.append_attribute("part") = "0";
dataset_node.append_attribute("file") = p_pvtu.filename().c_str();
}
//----------------------------------------------------------------------------
} // namespace
//----------------------------------------------------------------------------
io::VTKFile::VTKFile(MPI_Comm comm, const std::filesystem::path& filename,
const std::string&)
: _filename(filename), _comm(comm)
{
_pvd_xml = std::make_unique<pugi::xml_document>();
assert(_pvd_xml);
pugi::xml_node vtk_node = _pvd_xml->append_child("VTKFile");
vtk_node.append_attribute("type") = "Collection";
vtk_node.append_attribute("version") = "1.0";
vtk_node.append_child("Collection");
}
//----------------------------------------------------------------------------
io::VTKFile::~VTKFile()
{
if (_pvd_xml and dolfinx::MPI::rank(_comm.comm()) == 0)
{
if (_filename.has_parent_path())
std::filesystem::create_directories(_filename.parent_path());
_pvd_xml->save_file(_filename.c_str(), " ");
}
}
//----------------------------------------------------------------------------
void io::VTKFile::close()
{
if (_pvd_xml and dolfinx::MPI::rank(_comm.comm()) == 0)
{
if (_filename.has_parent_path())
std::filesystem::create_directories(_filename.parent_path());
bool status = _pvd_xml->save_file(_filename.c_str(), " ");
if (status == false)
{
throw std::runtime_error(
"Could not write VTKFile. Does the directory "
"exists and do you have read/write permissions?");
}
}
}
//----------------------------------------------------------------------------
void io::VTKFile::flush()
{
int mpi_rank = dolfinx::MPI::rank(_comm.comm());
if (!_pvd_xml and mpi_rank == 0)
throw std::runtime_error("VTKFile has already been closed");
if (mpi_rank == 0)
{
if (_filename.has_parent_path())
std::filesystem::create_directories(_filename.parent_path());
_pvd_xml->save_file(_filename.c_str(), " ");
}
}
//----------------------------------------------------------------------------
template <std::floating_point U>
void io::VTKFile::write(const mesh::Mesh<U>& mesh, double time)
{
if (!_pvd_xml)
throw std::runtime_error("VTKFile has already been closed");
// Get the PVD "Collection" node
pugi::xml_node xml_collections
= _pvd_xml->child("VTKFile").child("Collection");
assert(xml_collections);
// Compute counter string
const std::string counter_str = get_counter(xml_collections, "DataSet");
// Get mesh data for this rank
auto topology = mesh.topology();
assert(topology);
const mesh::Geometry<U>& geometry = mesh.geometry();
auto xmap = geometry.index_map();
assert(xmap);
const int tdim = topology->dim();
const std::int32_t num_points = xmap->size_local() + xmap->num_ghosts();
const std::int32_t num_cells = topology->index_map(tdim)->size_local()
+ topology->index_map(tdim)->num_ghosts();
// Create a VTU XML object
pugi::xml_document xml_vtu;
pugi::xml_node vtk_node_vtu = xml_vtu.append_child("VTKFile");
vtk_node_vtu.append_attribute("type") = "UnstructuredGrid";
vtk_node_vtu.append_attribute("version") = "2.2";
pugi::xml_node grid_node_vtu = vtk_node_vtu.append_child("UnstructuredGrid");
// Add "Piece" node and required metadata
pugi::xml_node piece_node = grid_node_vtu.append_child("Piece");
piece_node.append_attribute("NumberOfPoints") = num_points;
piece_node.append_attribute("NumberOfCells") = num_cells;
mesh::CellType cell_type = topology->cell_type();
// Add mesh data to "Piece" node
const auto [cells, cshape]
= extract_vtk_connectivity(mesh.geometry().dofmap(), cell_type);
std::array<std::size_t, 2> xshape = {geometry.x().size() / 3, 3};
std::vector<std::uint8_t> x_ghost(xshape[0], 0);
std::fill(std::next(x_ghost.begin(), xmap->size_local()), x_ghost.end(), 1);
add_mesh(geometry.x(), xshape, geometry.input_global_indices(), x_ghost,
cells, cshape, *topology->index_map(tdim), cell_type,
topology->dim(), piece_node);
// Create filepath for a .vtu file
auto create_vtu_path = [file_root = _filename.parent_path(),
file_name = _filename.stem(), counter_str](int rank)
{
std::filesystem::path vtu = file_root / file_name;
vtu += +"_p" + std::to_string(rank) + "_" + counter_str;
vtu.replace_extension("vtu");
return vtu;
};
// Save VTU XML to file
const int mpi_rank = dolfinx::MPI::rank(_comm.comm());
std::filesystem::path vtu = create_vtu_path(mpi_rank);
if (vtu.has_parent_path())
std::filesystem::create_directories(vtu.parent_path());
xml_vtu.save_file(vtu.c_str(), " ");
// Create a PVTU XML object on rank 0
std::filesystem::path p_pvtu = _filename.parent_path() / _filename.stem();
p_pvtu += counter_str;
p_pvtu.replace_extension("pvtu");
if (mpi_rank == 0)
{
pugi::xml_document xml_pvtu;
pugi::xml_node vtk_node = xml_pvtu.append_child("VTKFile");
vtk_node.append_attribute("type") = "PUnstructuredGrid";
vtk_node.append_attribute("version") = "1.0";
pugi::xml_node grid_node = vtk_node.append_child("PUnstructuredGrid");
grid_node.append_attribute("GhostLevel") = 1;
// Add mesh metadata to PVTU object
add_pvtu_mesh(grid_node);
// Add data for each process to the PVTU object
const int mpi_size = dolfinx::MPI::size(_comm.comm());
for (int r = 0; r < mpi_size; ++r)
{
std::filesystem::path vtu = create_vtu_path(r);
pugi::xml_node piece_node = grid_node.append_child("Piece");
piece_node.append_attribute("Source") = vtu.filename().c_str();
}
// Write PVTU file
if (p_pvtu.has_parent_path())
std::filesystem::create_directories(p_pvtu.parent_path());
xml_pvtu.save_file(p_pvtu.c_str(), " ");
}
// Append PVD file
pugi::xml_node dataset_node = xml_collections.append_child("DataSet");
dataset_node.append_attribute("timestep") = time;
dataset_node.append_attribute("part") = "0";
dataset_node.append_attribute("file") = p_pvtu.filename().c_str();
}
//----------------------------------------------------------------------------
template <dolfinx::scalar T, std::floating_point U>
void io::VTKFile::write(
const std::vector<std::reference_wrapper<const fem::Function<T, U>>>& u,
double time)
{
write_function<T, U>(u, time, _pvd_xml.get(), _filename);
}
//-----------------------------------------------------------------------------
// Instantiation for different types
/// @cond
template void io::VTKFile::write(const mesh::Mesh<float>&, double);
template void io::VTKFile::write(const mesh::Mesh<double>&, double);
template void io::VTKFile::write(
const std::vector<
std::reference_wrapper<const fem::Function<float, float>>>&,
double);
template void io::VTKFile::write(
const std::vector<
std::reference_wrapper<const fem::Function<double, double>>>&,
double);
template void
io::VTKFile::write(const std::vector<std::reference_wrapper<
const fem::Function<std::complex<float>, float>>>&,
double);
template void
io::VTKFile::write(const std::vector<std::reference_wrapper<
const fem::Function<std::complex<double>, double>>>&,
double);
/// @endcond
//-----------------------------------------------------------------------------
|