1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
// Copyright (C) 2012-2020 Chris N. Richardson, Garth N. Wells and Michal Habera
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "xdmf_function.h"
#include "xdmf_mesh.h"
#include "xdmf_utils.h"
#include <basix/mdspan.hpp>
#include <boost/lexical_cast.hpp>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/fem/DofMap.h>
#include <dolfinx/fem/FiniteElement.h>
#include <dolfinx/fem/Function.h>
#include <dolfinx/fem/FunctionSpace.h>
#include <dolfinx/mesh/Mesh.h>
#include <dolfinx/mesh/Topology.h>
#include <pugixml.hpp>
#include <string>
using namespace dolfinx;
using namespace dolfinx::io;
namespace
{
/// Convert a shape to the XDMF string description (Scalar, Vector,
/// Tensor).
std::string shape_to_string(std::span<const std::size_t> shape)
{
if (shape.empty())
return "Scalar";
else if (shape.size() == 1 and shape[0] == 1)
return "Scalar";
else if (shape.size() == 1)
return "Vector";
else if (shape.size() == 2)
return "Tensor";
else
throw std::runtime_error("Unsupported value shape");
}
} // namespace
//-----------------------------------------------------------------------------
template <dolfinx::scalar T, std::floating_point U>
void xdmf_function::add_function(MPI_Comm comm, const fem::Function<T, U>& u,
double t, pugi::xml_node& xml_node,
hid_t h5_id)
{
spdlog::info("Adding function to node \"{}\"", xml_node.path('/'));
assert(u.function_space());
auto mesh = u.function_space()->mesh();
assert(mesh);
std::shared_ptr<const fem::FiniteElement<U>> element
= u.function_space()->element();
assert(element);
// FIXME: is the below check adequate for detecting a Lagrange
// element?
// Check that element is Lagrange
if (!element->interpolation_ident())
{
throw std::runtime_error("Only Lagrange functions are supported. "
"Interpolate Functions before output.");
}
auto map_c = mesh->topology()->index_map(mesh->topology()->dim());
assert(map_c);
auto map_x = mesh->geometry().index_map();
assert(map_x);
auto dofmap = u.function_space()->dofmap();
assert(dofmap);
const int bs = dofmap->bs();
// Pad to 3D if vector/tensor is product of dimensions is smaller than 3**rank
// to ensure that we can visualize them correctly in Paraview
std::span<const std::size_t> value_shape = u.function_space()->value_shape();
int rank = value_shape.size();
int num_components = std::reduce(value_shape.begin(), value_shape.end(), 1,
std::multiplies{});
if (num_components < std::pow(3, rank))
num_components = std::pow(3, rank);
// Get fem::Function data values and shape
std::vector<T> data_values;
std::span<const T> x = u.x()->array();
const bool cell_centred
= element->space_dimension() / element->block_size() == 1;
if (cell_centred)
{
// Get dof array and pack into array (padded where appropriate)
const std::int32_t num_local_cells = map_c->size_local();
data_values.resize(num_local_cells * num_components, 0);
for (std::int32_t c = 0; c < num_local_cells; ++c)
{
auto dofs = dofmap->cell_dofs(c);
assert(dofs.size() == 1);
for (std::size_t i = 0; i < dofs.size(); ++i)
for (int j = 0; j < bs; ++j)
data_values[num_components * c + j] = x[bs * dofs[i] + j];
}
}
else
{
// Get number of geometry nodes per cell
const auto& geometry = mesh->geometry();
auto& cmap = geometry.cmap();
int cmap_dim = cmap.dim();
int cell_dim = element->space_dimension() / element->block_size();
if (cmap_dim != cell_dim)
{
throw std::runtime_error(
"Degree of output Function must be same as mesh degree. Maybe the "
"Function needs to be interpolated?");
}
// Check that dofmap layouts are equal and check Lagrange variants
if (dofmap->element_dof_layout() != cmap.create_dof_layout())
{
throw std::runtime_error("Function and Mesh dof layouts do not match. "
"Maybe the Function needs to be interpolated?");
}
if (cmap.degree() > 2
and element->basix_element().lagrange_variant() != cmap.variant())
{
throw std::runtime_error("Mis-match in Lagrange family. Maybe the "
"Function needs to be interpolated?");
}
std::int32_t num_cells = map_c->size_local() + map_c->num_ghosts();
std::int32_t num_local_points = map_x->size_local();
// Get dof array and pack into array (padded where appropriate)
auto dofmap_x = geometry.dofmap();
data_values.resize(num_local_points * num_components, 0);
for (std::int32_t c = 0; c < num_cells; ++c)
{
auto dofs = dofmap->cell_dofs(c);
auto dofs_x = MDSPAN_IMPL_STANDARD_NAMESPACE::submdspan(
dofmap_x, c, MDSPAN_IMPL_STANDARD_NAMESPACE::full_extent);
assert(dofs.size() == dofs_x.size());
for (std::size_t i = 0; i < dofs.size(); ++i)
{
if (dofs_x[i] < num_local_points)
{
for (int j = 0; j < bs; ++j)
data_values[num_components * dofs_x[i] + j] = x[bs * dofs[i] + j];
}
}
}
}
// Global size
const std::int64_t num_values
= cell_centred ? map_c->size_global() : map_x->size_global();
const std::int64_t num_local = data_values.size() / num_components;
std::int64_t offset = 0;
MPI_Exscan(&num_local, &offset, 1, MPI_INT64_T, MPI_SUM, comm);
const bool use_mpi_io = dolfinx::MPI::size(comm) > 1;
std::vector<std::string> components = {""};
if constexpr (!std::is_scalar_v<T>)
components = {"real_", "imag_"};
std::string t_str = boost::lexical_cast<std::string>(t);
std::replace(t_str.begin(), t_str.end(), '.', '_');
for (auto component : components)
{
std::string attr_name = component + u.name;
std::string dataset_name
= std::string("/Function/") + attr_name + std::string("/") + t_str;
// Add attribute node
pugi::xml_node attr_node = xml_node.append_child("Attribute");
assert(attr_node);
attr_node.append_attribute("Name") = attr_name.c_str();
attr_node.append_attribute("AttributeType")
= shape_to_string(value_shape).c_str();
attr_node.append_attribute("Center") = cell_centred ? "Cell" : "Node";
std::span<const scalar_value_type_t<T>> u;
std::vector<scalar_value_type_t<T>> _data;
if constexpr (!std::is_scalar_v<T>)
{
// Complex-valued case
_data.resize(data_values.size());
if (component == "real_")
{
std::ranges::transform(data_values, _data.begin(),
[](auto x) { return x.real(); });
}
else if (component == "imag_")
{
std::ranges::transform(data_values, _data.begin(),
[](auto x) { return x.imag(); });
}
u = std::span<const scalar_value_type_t<T>>(_data);
}
else
u = std::span<const T>(data_values);
// -- Real case, add data item
xdmf_utils::add_data_item(attr_node, h5_id, dataset_name, u, offset,
{num_values, num_components}, "", use_mpi_io);
}
}
//-----------------------------------------------------------------------------
// Instantiation for different types
/// @cond
template void xdmf_function::add_function(MPI_Comm,
const fem::Function<float, float>&,
double, pugi::xml_node&, hid_t);
template void xdmf_function::add_function(MPI_Comm,
const fem::Function<double, double>&,
double, pugi::xml_node&, hid_t);
template void
xdmf_function::add_function(MPI_Comm,
const fem::Function<std::complex<float>, float>&,
double, pugi::xml_node&, hid_t);
template void
xdmf_function::add_function(MPI_Comm,
const fem::Function<std::complex<double>, double>&,
double, pugi::xml_node&, hid_t);
/// @endcond
//-----------------------------------------------------------------------------
|