1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
// Copyright (C) 2014-2018 Chris Richardson
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "dolfinx/graph/AdjacencyList.h"
#include "dolfinx/mesh/Mesh.h"
#include "dolfinx/mesh/Topology.h"
#include "dolfinx/mesh/utils.h"
#include "option.h"
#include "utils.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <optional>
#include <span>
#include <tuple>
#include <utility>
#include <vector>
#pragma once
/// @brief Plaza mesh refinement.
///
/// Functions for the refinement method described in Plaza and Carey
/// "Local refinement of simplicial grids based on the skeleton",
/// Applied Numerical Mathematics 32 (2000), 195-218.
namespace dolfinx::refinement::plaza
{
namespace impl
{
/// Computes the parent-child facet relationship
/// @param simplex_set - index into indices for each child cell
/// @return mapping from child to parent facets, using cell-local index
template <int tdim>
auto compute_parent_facets(std::span<const std::int32_t> simplex_set)
{
static_assert(tdim == 2 or tdim == 3);
assert(simplex_set.size() % (tdim + 1) == 0);
using parent_facet_t
= std::conditional_t<tdim == 2, std::array<std::int8_t, 12>,
std::array<std::int8_t, 32>>;
parent_facet_t parent_facet;
parent_facet.fill(-1);
assert(simplex_set.size() <= parent_facet.size());
// Index lookups in 'indices' for the child vertices that occur on
// each parent facet in 2D and 3D. In 2D each edge has 3 child
// vertices, and in 3D each triangular facet has six child vertices.
constexpr std::array<std::array<int, 3>, 3> facet_table_2d{
{{1, 2, 3}, {0, 2, 4}, {0, 1, 5}}};
constexpr std::array<std::array<int, 6>, 4> facet_table_3d{
{{1, 2, 3, 4, 5, 6},
{0, 2, 3, 4, 7, 8},
{0, 1, 3, 5, 7, 9},
{0, 1, 2, 6, 8, 9}}};
const int ncells = simplex_set.size() / (tdim + 1);
for (int fpi = 0; fpi < (tdim + 1); ++fpi)
{
// For each child cell, consider all facets
for (int cc = 0; cc < ncells; ++cc)
{
for (int fci = 0; fci < (tdim + 1); ++fci)
{
// Indices of all vertices on child facet, sorted
std::array<int, tdim> cf, set_output;
int num_common_vertices;
if constexpr (tdim == 2)
{
for (int j = 0; j < tdim; ++j)
cf[j] = simplex_set[cc * 3 + facet_table_2d[fci][j]];
std::ranges::sort(cf);
auto [last1, last2, it_last] = std::ranges::set_intersection(
facet_table_2d[fpi], cf, set_output.begin());
num_common_vertices = std::distance(set_output.begin(), it_last);
}
else
{
for (int j = 0; j < tdim; ++j)
cf[j] = simplex_set[cc * 4 + facet_table_3d[fci][j]];
std::ranges::sort(cf);
auto [last1, last2, it_last] = std::ranges::set_intersection(
facet_table_3d[fpi], cf, set_output.begin());
num_common_vertices = std::distance(set_output.begin(), it_last);
}
if (num_common_vertices == tdim)
{
assert(parent_facet[cc * (tdim + 1) + fci] == -1);
// Child facet "fci" of cell cc, lies on parent facet "fpi"
parent_facet[cc * (tdim + 1) + fci] = fpi;
}
}
}
}
return parent_facet;
}
/// @brief Get the subdivision of an original simplex into smaller simplices,
/// for a given set of marked edges, and the longest edge of each facet
/// (cell local indexing).
///
/// A flag indicates if a uniform subdivision is preferable in 2D.
///
/// @param[in] indices Vector containing the global indices for the
/// original vertices and potential new vertices at each edge. Size
/// (num_vertices + num_edges). If an edge is not refined its
/// corresponding entry is -1.
/// @param[in] longest_edge Vector indicating the longest edge for each
/// triangle in the cell. For triangular cells (2D) there is only one
/// value, and for tetrahedra (3D) there are four values, one for each
/// facet. The values give the local edge indices of the cell.
/// @param[in] tdim Topological dimension (2 or 3).
/// @param[in] uniform Make a "uniform" subdivision with all triangles.
/// being similar shape.
/// @return
std::pair<std::array<std::int32_t, 32>, std::size_t>
get_simplices(std::span<const std::int64_t> indices,
std::span<const std::int32_t> longest_edge, int tdim,
bool uniform);
/// Propagate edge markers according to rules (longest edge of each
/// face must be marked, if any edge of face is marked)
void enforce_rules(MPI_Comm comm, const graph::AdjacencyList<int>& shared_edges,
std::span<std::int8_t> marked_edges,
const mesh::Topology& topology,
std::span<const std::int32_t> long_edge);
/// @brief Get the longest edge of each face (using local mesh index).
///
/// @note Edge ratio ok returns an array in 2D, where it checks if the
/// ratio between the shortest and longest edge of a cell is bigger than
/// sqrt(2)/2. In 3D an empty array is returned.
///
/// @param[in] mesh The mesh
/// @return A tuple (longest edge, edge ratio ok) where longest edge
/// gives the local index of the longest edge for each face.
template <std::floating_point T>
std::pair<std::vector<std::int32_t>, std::vector<std::int8_t>>
face_long_edge(const mesh::Mesh<T>& mesh)
{
const int tdim = mesh.topology()->dim();
// FIXME: cleanup these calls? Some of the happen internally again.
mesh.topology_mutable()->create_entities(1);
mesh.topology_mutable()->create_entities(2);
mesh.topology_mutable()->create_connectivity(2, 1);
mesh.topology_mutable()->create_connectivity(1, tdim);
mesh.topology_mutable()->create_connectivity(tdim, 2);
std::int64_t num_faces = mesh.topology()->index_map(2)->size_local()
+ mesh.topology()->index_map(2)->num_ghosts();
// Storage for face-local index of longest edge
std::vector<std::int32_t> long_edge(num_faces);
std::vector<std::int8_t> edge_ratio_ok;
// Check mesh face quality (may be used in 2D to switch to "uniform"
// refinement)
const T min_ratio = std::sqrt(2.0) / 2.0;
if (tdim == 2)
edge_ratio_ok.resize(num_faces);
auto x_dofmap = mesh.geometry().dofmap();
auto c_to_v = mesh.topology()->connectivity(tdim, 0);
assert(c_to_v);
auto e_to_c = mesh.topology()->connectivity(1, tdim);
assert(e_to_c);
auto e_to_v = mesh.topology()->connectivity(1, 0);
assert(e_to_v);
// Store all edge lengths in Mesh to save recalculating for each Face
auto map_e = mesh.topology()->index_map(1);
assert(map_e);
std::vector<T> edge_length(map_e->size_local() + map_e->num_ghosts());
for (std::size_t e = 0; e < edge_length.size(); ++e)
{
// Get first attached cell
auto cells = e_to_c->links(e);
assert(!cells.empty());
auto cell_vertices = c_to_v->links(cells.front());
auto edge_vertices = e_to_v->links(e);
// Find local index of edge vertices in the cell geometry map
auto it0 = std::find(cell_vertices.begin(), cell_vertices.end(),
edge_vertices[0]);
assert(it0 != cell_vertices.end());
const std::size_t local0 = std::distance(cell_vertices.begin(), it0);
auto it1 = std::find(cell_vertices.begin(), cell_vertices.end(),
edge_vertices[1]);
assert(it1 != cell_vertices.end());
const std::size_t local1 = std::distance(cell_vertices.begin(), it1);
auto x_dofs = MDSPAN_IMPL_STANDARD_NAMESPACE::submdspan(
x_dofmap, cells.front(), MDSPAN_IMPL_STANDARD_NAMESPACE::full_extent);
std::span<const T, 3> x0(mesh.geometry().x().data() + 3 * x_dofs[local0],
3);
std::span<const T, 3> x1(mesh.geometry().x().data() + 3 * x_dofs[local1],
3);
// Compute length of edge between vertex x0 and x1
edge_length[e] = std::sqrt(std::transform_reduce(
x0.begin(), x0.end(), x1.begin(), 0.0, std::plus<>(),
[](auto x0, auto x1) { return (x0 - x1) * (x0 - x1); }));
}
// Get longest edge of each face
auto f_to_v = mesh.topology()->connectivity(2, 0);
assert(f_to_v);
auto f_to_e = mesh.topology()->connectivity(2, 1);
assert(f_to_e);
const std::vector global_indices
= mesh.topology()->index_map(0)->global_indices();
for (int f = 0; f < f_to_v->num_nodes(); ++f)
{
auto face_edges = f_to_e->links(f);
std::int32_t imax = 0;
T max_len = 0.0;
T min_len = std::numeric_limits<T>::max();
for (int i = 0; i < 3; ++i)
{
const T e_len = edge_length[face_edges[i]];
min_len = std::min(e_len, min_len);
if (e_len > max_len)
{
max_len = e_len;
imax = i;
}
else if (tdim == 3 and e_len == max_len)
{
// If edges are the same length, compare global index of
// opposite vertex. Only important so that tetrahedral faces
// have a matching refinement pattern across processes.
auto vertices = f_to_v->links(f);
const int vmax = vertices[imax];
const int vi = vertices[i];
if (global_indices[vi] > global_indices[vmax])
imax = i;
}
}
// Only save edge ratio in 2D
if (tdim == 2)
edge_ratio_ok[f] = (min_len / max_len >= min_ratio);
long_edge[f] = face_edges[imax];
}
return std::pair(std::move(long_edge), std::move(edge_ratio_ok));
}
/// @brief Convenient interface for both uniform and marker refinement
///
/// @note The parent facet map gives you the map from a cell given by parent
/// cell map to the local index (relative to the cell), e.g. the i-th entry of
/// parent facets relates to the local facet index of the i-th entry parent
/// cell.
///
/// @param[in] neighbor_comm Neighbourhood communciator scattering owned edges
/// to processes with ghosts
/// @param[in] marked_edges A marker for all edges on the process (local +
/// ghosts) indicating if an edge should be refined
/// @param[in] shared_edges For each local edge on a process map to ghost
/// processes
/// @param[in] mesh The mesh
/// @param[in] long_edge A map from each face to its longest edge. Index is
/// local to the process.
/// @param[in] edge_ratio_ok For each face in a 2D mesh this error contains a
/// marker indicating if the ratio between smallest and largest edge is bigger
/// than sqrt(2)/2
/// @param[in] option Option to compute additional information relating refined
/// and original mesh entities
/// @return (0) The new mesh topology, (1) the new flattened mesh geometry, (3)
/// Shape of the new geometry_shape, (4) Map from new cells to parent cells
/// and (5) map from refined facets to parent facets.
template <std::floating_point T>
std::tuple<graph::AdjacencyList<std::int64_t>, std::vector<T>,
std::array<std::size_t, 2>, std::optional<std::vector<std::int32_t>>,
std::optional<std::vector<std::int8_t>>>
compute_refinement(MPI_Comm neighbor_comm,
std::span<const std::int8_t> marked_edges,
const graph::AdjacencyList<int>& shared_edges,
const mesh::Mesh<T>& mesh,
std::span<const std::int32_t> long_edge,
std::span<const std::int8_t> edge_ratio_ok, Option option)
{
int tdim = mesh.topology()->dim();
int num_cell_edges = tdim * 3 - 3;
int num_cell_vertices = tdim + 1;
bool compute_facets = option_parent_facet(option);
bool compute_parent_cell = option_parent_cell(option);
// Make new vertices in parallel
const auto [new_vertex_map, new_vertex_coords, xshape]
= create_new_vertices(neighbor_comm, shared_edges, mesh, marked_edges);
std::optional<std::vector<std::int32_t>> parent_cell(std::nullopt);
if (compute_parent_cell)
parent_cell.emplace();
std::optional<std::vector<std::int8_t>> parent_facet(std::nullopt);
if (compute_facets)
parent_facet.emplace();
std::vector<std::int64_t> indices(num_cell_vertices + num_cell_edges);
std::vector<std::int32_t> simplex_set;
auto map_c = mesh.topology()->index_map(tdim);
assert(map_c);
auto c_to_v = mesh.topology()->connectivity(tdim, 0);
assert(c_to_v);
auto c_to_e = mesh.topology()->connectivity(tdim, 1);
assert(c_to_e);
auto c_to_f = mesh.topology()->connectivity(tdim, 2);
assert(c_to_f);
std::int32_t num_new_vertices_local = std::count(
marked_edges.begin(),
marked_edges.begin() + mesh.topology()->index_map(1)->size_local(), true);
std::vector<std::int64_t> global_indices
= adjust_indices(*mesh.topology()->index_map(0), num_new_vertices_local);
const std::int32_t num_cells = map_c->size_local();
// Iterate over all cells, and refine if cell has a marked edge
std::vector<std::int64_t> cell_topology;
for (int c = 0; c < num_cells; ++c)
{
// Create vector of indices in the order [vertices][edges], 3+3 in
// 2D, 4+6 in 3D
// Copy vertices
auto vertices = c_to_v->links(c);
for (std::size_t v = 0; v < vertices.size(); ++v)
indices[v] = global_indices[vertices[v]];
// Get cell-local indices of marked edges
auto edges = c_to_e->links(c);
bool no_edge_marked = true;
for (std::size_t ei = 0; ei < edges.size(); ++ei)
{
if (marked_edges[edges[ei]])
{
no_edge_marked = false;
auto it = new_vertex_map.find(edges[ei]);
assert(it != new_vertex_map.end());
indices[num_cell_vertices + ei] = it->second;
}
else
indices[num_cell_vertices + ei] = -1;
}
if (no_edge_marked)
{
// Copy over existing cell to new topology
for (auto v : vertices)
cell_topology.push_back(global_indices[v]);
if (compute_parent_cell)
parent_cell->push_back(c);
if (compute_facets)
{
if (tdim == 3)
parent_facet->insert(parent_facet->end(), {0, 1, 2, 3});
else
parent_facet->insert(parent_facet->end(), {0, 1, 2});
}
}
else
{
// Need longest edges of each face in cell local indexing. NB in
// 2D the face is the cell itself, and there is just one entry.
std::vector<std::int32_t> longest_edge;
for (auto f : c_to_f->links(c))
longest_edge.push_back(long_edge[f]);
// Convert to cell local index
for (std::int32_t& p : longest_edge)
{
for (std::size_t ej = 0; ej < edges.size(); ++ej)
{
if (p == edges[ej])
{
p = ej;
break;
}
}
}
const bool uniform = (tdim == 2) ? edge_ratio_ok[c] : false;
const auto [simplex_set_b, simplex_set_size]
= get_simplices(indices, longest_edge, tdim, uniform);
std::span<const std::int32_t> simplex_set(simplex_set_b.data(),
simplex_set_size);
// Save parent index
const std::int32_t ncells = simplex_set.size() / num_cell_vertices;
if (compute_parent_cell)
{
for (std::int32_t i = 0; i < ncells; ++i)
parent_cell->push_back(c);
}
if (compute_facets)
{
if (tdim == 3)
{
auto npf = compute_parent_facets<3>(simplex_set);
parent_facet->insert(parent_facet->end(), npf.begin(),
std::next(npf.begin(), simplex_set.size()));
}
else
{
auto npf = compute_parent_facets<2>(simplex_set);
parent_facet->insert(parent_facet->end(), npf.begin(),
std::next(npf.begin(), simplex_set.size()));
}
}
// Convert from cell local index to mesh index and add to cells
for (std::int32_t v : simplex_set)
cell_topology.push_back(indices[v]);
}
}
assert(cell_topology.size() % num_cell_vertices == 0);
std::vector<std::int32_t> offsets(
cell_topology.size() / num_cell_vertices + 1, 0);
for (std::size_t i = 0; i < offsets.size() - 1; ++i)
offsets[i + 1] = offsets[i] + num_cell_vertices;
graph::AdjacencyList cell_adj(std::move(cell_topology), std::move(offsets));
return {std::move(cell_adj), std::move(new_vertex_coords), xshape,
std::move(parent_cell), std::move(parent_facet)};
}
} // namespace impl
/// Refine with markers returning new mesh data.
///
/// @param[in] mesh Input mesh to be refined
/// @param[in] edges Indices of the edges that should be split by this
/// refinement
/// @param[in] option Control the computation of parent facets, parent
/// cells. If an option is unselected, an empty list is returned.
/// @return New mesh data: cell topology, vertex coordinates and parent
/// cell index, and stored parent facet indices (if requested).
template <std::floating_point T>
std::tuple<graph::AdjacencyList<std::int64_t>, std::vector<T>,
std::array<std::size_t, 2>, std::optional<std::vector<std::int32_t>>,
std::optional<std::vector<std::int8_t>>>
compute_refinement_data(const mesh::Mesh<T>& mesh,
std::optional<std::span<const std::int32_t>> edges,
Option option)
{
common::Timer t0("PLAZA: refine");
auto topology = mesh.topology();
assert(topology);
if (topology->cell_type() != mesh::CellType::triangle
and topology->cell_type() != mesh::CellType::tetrahedron)
{
throw std::runtime_error("Cell type not supported");
}
auto map_e = topology->index_map(1);
if (!map_e)
throw std::runtime_error("Edges must be initialised");
// Get sharing ranks for each edge
graph::AdjacencyList<int> edge_ranks = map_e->index_to_dest_ranks();
// Create unique list of ranks that share edges (owners of ghosts plus
// ranks that ghost owned indices)
std::vector<int> ranks(edge_ranks.array().begin(), edge_ranks.array().end());
std::ranges::sort(ranks);
auto [unique_end, range_end] = std::ranges::unique(ranks);
ranks.erase(unique_end, range_end);
// Convert edge_ranks from global rank to to neighbourhood ranks
std::ranges::transform(edge_ranks.array(), edge_ranks.array().begin(),
[&ranks](auto r)
{
auto it = std::ranges::lower_bound(ranks, r);
assert(it != ranks.end() and *it == r);
return std::distance(ranks.begin(), it);
});
// Get number of neighbors
std::vector<std::int8_t> marked_edges(
map_e->size_local() + map_e->num_ghosts(), !edges.has_value());
std::vector<std::vector<std::int32_t>> marked_for_update(ranks.size());
if (edges.has_value())
{
for (auto edge : edges.value())
{
if (!marked_edges[edge])
{
marked_edges[edge] = true;
// If it is a shared edge, add all sharing neighbors to update set
for (int rank : edge_ranks.links(edge))
marked_for_update[rank].push_back(edge);
}
}
}
MPI_Comm comm;
MPI_Dist_graph_create_adjacent(mesh.comm(), ranks.size(), ranks.data(),
MPI_UNWEIGHTED, ranks.size(), ranks.data(),
MPI_UNWEIGHTED, MPI_INFO_NULL, false, &comm);
// Communicate any shared edges
update_logical_edgefunction(comm, marked_for_update, marked_edges, *map_e);
// Enforce rules about refinement (i.e. if any edge is marked in a
// triangle, then the longest edge must also be marked).
const auto [long_edge, edge_ratio_ok] = impl::face_long_edge(mesh);
impl::enforce_rules(comm, edge_ranks, marked_edges, *topology, long_edge);
auto [cell_adj, new_vertex_coords, xshape, parent_cell, parent_facet]
= impl::compute_refinement(comm, marked_edges, edge_ranks, mesh,
long_edge, edge_ratio_ok, option);
MPI_Comm_free(&comm);
return {std::move(cell_adj), std::move(new_vertex_coords), xshape,
std::move(parent_cell), std::move(parent_facet)};
}
} // namespace dolfinx::refinement::plaza
|