1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
// Copyright (C) 2022 Igor A. Baratta
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Unit tests for Distributed la::MatrixCSR
#include "poisson.h"
#include <algorithm>
#include <basix/mdspan.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/catch_test_macros.hpp>
#include <dolfinx.h>
#include <dolfinx/common/IndexMap.h>
#include <dolfinx/la/MatrixCSR.h>
#include <dolfinx/la/SparsityPattern.h>
#include <dolfinx/la/Vector.h>
#include <mpi.h>
#include <span>
using namespace dolfinx;
namespace
{
/// Computes y += A*x for a local CSR matrix A and local dense vectors x,y
/// @param[in] values Nonzero values of A
/// @param[in] row_begin First index of each row in the arrays values and
/// indices.
/// @param[in] row_end Last index of each row in the arrays values and indices.
/// @param[in] indices Column indices for each non-zero element of the matrix A
/// @param[in] x Input vector
/// @param[in, out] x Output vector
template <typename T>
void spmv_impl(std::span<const T> values,
std::span<const std::int64_t> row_begin,
std::span<const std::int64_t> row_end,
std::span<const std::int32_t> indices, std::span<const T> x,
std::span<T> y)
{
assert(row_begin.size() == row_end.size());
for (std::size_t i = 0; i < row_begin.size(); i++)
{
double vi{0};
for (std::int32_t j = row_begin[i]; j < row_end[i]; j++)
vi += values[j] * x[indices[j]];
y[i] += vi;
}
}
// The matrix A is distributed across P processes by blocks of rows:
// A = | A_0 |
// | A_1 |
// | ... |
// | A_P-1 |
//
// Each submatrix A_i is owned by a single process "i" and can be further
// decomposed into diagonal (Ai[0]) and off diagonal (Ai[1]) blocks:
// Ai = |Ai[0] Ai[1]|
//
// If A is square, the diagonal block Ai[0] is also square and contains
// only owned columns and rows. The block Ai[1] contains ghost columns
// (unowned dofs).
// Likewise, a local vector x can be decomposed into owned and ghost blocks:
// xi = | x[0] |
// | x[1] |
//
// So the product y = Ax can be computed into two separate steps:
// y[0] = |Ai[0] Ai[1]| | x[0] | = Ai[0] x[0] + Ai[1] x[1]
// | x[1] |
//
/// Computes y += A*x for a parallel CSR matrix A and parallel dense vectors x,y
/// @param[in] A Parallel CSR matrix
/// @param[in] x Input vector
/// @param[in, out] y Output vector
template <typename T>
void spmv(la::MatrixCSR<T>& A, la::Vector<T>& x, la::Vector<T>& y)
{
// start communication (update ghosts)
x.scatter_fwd_begin();
const std::int32_t nrowslocal = A.num_owned_rows();
std::span<const std::int64_t> row_ptr(A.row_ptr().data(), nrowslocal + 1);
std::span<const std::int32_t> cols(A.cols().data(), row_ptr[nrowslocal]);
std::span<const std::int64_t> off_diag_offset(A.off_diag_offset().data(),
nrowslocal);
std::span<const T> values(A.values().data(), row_ptr[nrowslocal]);
std::span<const T> _x = x.array();
std::span<T> _y = y.mutable_array();
std::span<const std::int64_t> row_begin(row_ptr.data(), nrowslocal);
std::span<const std::int64_t> row_end(row_ptr.data() + 1, nrowslocal);
// First stage: spmv - diagonal
// yi[0] += Ai[0] * xi[0]
spmv_impl<T>(values, row_begin, off_diag_offset, cols, _x, _y);
// finalize ghost update
x.scatter_fwd_end();
// Second stage: spmv - off-diagonal
// yi[0] += Ai[1] * xi[1]
spmv_impl<T>(values, off_diag_offset, row_end, cols, _x, _y);
}
/// @brief Create a matrix operator
/// @param comm The communicator to builf the matrix on
/// @return The assembled matrix
la::MatrixCSR<double> create_operator(MPI_Comm comm)
{
auto part = mesh::create_cell_partitioner(mesh::GhostMode::none);
auto mesh = std::make_shared<mesh::Mesh<double>>(
mesh::create_box(comm, {{{0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}}}, {12, 12, 12},
mesh::CellType::tetrahedron, part));
auto element = basix::create_element<double>(
basix::element::family::P, basix::cell::type::tetrahedron, 2,
basix::element::lagrange_variant::unset,
basix::element::dpc_variant::unset, false);
auto V = std::make_shared<fem::FunctionSpace<double>>(
fem::create_functionspace(mesh, element, {}));
// Prepare and set Constants for the bilinear form
auto kappa = std::make_shared<fem::Constant<double>>(2.0);
auto a = std::make_shared<fem::Form<double, double>>(
fem::create_form<double, double>(*form_poisson_a, {V, V}, {},
{{"kappa", kappa}}, {}, {}));
la::SparsityPattern sp = fem::create_sparsity_pattern(*a);
sp.finalize();
la::MatrixCSR<double> A(sp);
fem::assemble_matrix(A.mat_add_values(), *a, {});
A.scatter_rev();
return A;
}
[[maybe_unused]] void test_matrix_norm()
{
la::MatrixCSR A0 = create_operator(MPI_COMM_SELF);
la::MatrixCSR A1 = create_operator(MPI_COMM_WORLD);
CHECK(A1.squared_norm() == Catch::Approx(A0.squared_norm()).epsilon(1e-8));
}
[[maybe_unused]] void test_matrix_apply()
{
MPI_Comm comm = MPI_COMM_WORLD;
auto part = mesh::create_cell_partitioner(mesh::GhostMode::none);
auto mesh = std::make_shared<mesh::Mesh<double>>(
mesh::create_box(comm, {{{0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}}}, {12, 12, 12},
mesh::CellType::tetrahedron, part));
auto element = basix::create_element<double>(
basix::element::family::P, basix::cell::type::tetrahedron, 2,
basix::element::lagrange_variant::unset,
basix::element::dpc_variant::unset, false);
auto V = std::make_shared<fem::FunctionSpace<double>>(
fem::create_functionspace(mesh, element, {}));
// Prepare and set Constants for the bilinear form
auto kappa = std::make_shared<fem::Constant<double>>(2.0);
auto ui = std::make_shared<fem::Function<double, double>>(V);
// Define variational forms
auto a = std::make_shared<fem::Form<double, double>>(
fem::create_form<double, double>(*form_poisson_a, {V, V}, {},
{{"kappa", kappa}}, {}, {}));
// Create sparsity pattern
la::SparsityPattern sp = fem::create_sparsity_pattern(*a);
sp.finalize();
// Assemble matrix
la::MatrixCSR<double> A(sp);
fem::assemble_matrix(A.mat_add_values(), *a, {});
A.scatter_rev();
CHECK((V->dofmap()->index_map->size_local() == A.num_owned_rows()));
// Get compatible vectors
auto col_map = A.index_map(1);
la::Vector<double> x(col_map, 1);
la::Vector<double> y(col_map, 1);
std::size_t col_size = col_map->size_local() + col_map->num_ghosts();
CHECK(x.array().size() == col_size);
// Fill x vector with 1 (Constant)
std::ranges::fill(x.mutable_array(), 1);
// Matrix A represents the action of the Laplace operator, so when
// applied to a constant vector the result should be zero
spmv(A, x, y);
std::ranges::for_each(y.array(),
[](auto a) { REQUIRE(std::abs(a) < 1e-13); });
}
void test_matrix()
{
auto map0 = std::make_shared<common::IndexMap>(MPI_COMM_WORLD, 8);
la::SparsityPattern p(MPI_COMM_WORLD, {map0, map0}, {1, 1});
p.insert(0, 0);
p.insert(4, 5);
p.insert(5, 4);
p.finalize();
using T = float;
la::MatrixCSR<T> A(p);
A.add(std::vector<decltype(A)::value_type>{1}, std::vector{0},
std::vector{0});
A.add(std::vector<decltype(A)::value_type>{2.3}, std::vector{4},
std::vector{5});
const std::vector Adense0 = A.to_dense();
// Note: we cut off the ghost rows by intent here! But therefore we are not
// able to work with the dimensions of Adense0 to compute indices, these
// contain the ghost rows, which also vary between processes.
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const T,
MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, 8, MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent>>
Adense(Adense0.data(), 8, A.index_map(1)->size_global());
std::vector<T> Aref_data(8 * A.index_map(1)->size_global(), 0);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
T, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, 8, MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent>>
Aref(Aref_data.data(), 8, A.index_map(1)->size_global());
auto to_global_col = [&](auto col)
{
std::array<std::int64_t, 1> tmp;
A.index_map(1)->local_to_global(std::vector<std::int32_t>{col}, tmp);
return tmp[0];
};
Aref(0, to_global_col(0)) = 1;
Aref(4, to_global_col(5)) = 2.3;
for (std::size_t i = 0; i < Adense.extent(0); ++i)
for (std::size_t j = 0; j < Adense.extent(1); ++j)
CHECK(Adense(i, j) == Aref(i, j));
Aref(4, to_global_col(4)) = 2.3;
CHECK(Adense(4, to_global_col(4)) != Aref(4, to_global_col(4)));
}
} // namespace
TEST_CASE("Linear Algebra CSR Matrix", "[la_matrix]")
{
CHECK_NOTHROW(test_matrix());
CHECK_NOTHROW(test_matrix_apply());
CHECK_NOTHROW(test_matrix_norm());
}
|