1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.14.1
# ---
# # Mixed formulation for the Poisson equation
# This demo illustrates how to solve Poisson equation using a mixed
# (two-field) formulation. In particular, it illustrates how to
#
# * Use mixed and non-continuous finite element spaces.
# * Set essential boundary conditions for subspaces and $H(\mathrm{div})$ spaces.
#
# ```{admonition} Download sources
# :class: download
#
# * {download}`Python script <./demo_mixed-poisson.py>`
# * {download}`Jupyter notebook <./demo_mixed-poisson.ipynb>`
# ```
#
# ## Equation and problem definition
#
# An alternative formulation of Poisson equation can be formulated by
# introducing an additional (vector) variable, namely the (negative)
# flux: $\sigma = \nabla u$. The partial differential equations
# then read
#
# $$
# \begin{align}
# \sigma - \nabla u &= 0 \quad {\rm in} \ \Omega, \\
# \nabla \cdot \sigma &= - f \quad {\rm in} \ \Omega,
# \end{align}
# $$
# with boundary conditions
#
# $$
# u = u_0 \quad {\rm on} \ \Gamma_{D}, \\
# \sigma \cdot n = g \quad {\rm on} \ \Gamma_{N}.
# $$
#
# The same equations arise in connection with flow in porous media, and are
# also referred to as Darcy flow. Here $n$ denotes the outward pointing normal
# vector on the boundary. Looking at the variational form, we see that the
# boundary condition for the flux ($\sigma \cdot n = g$) is now an essential
# boundary condition (which should be enforced in the function space), while
# the other boundary condition ($u = u_0$) is a natural boundary condition
# (which should be applied to the variational form). Inserting the boundary
# conditions, this variational problem can be phrased in the general form: find
# $(\sigma, u) \in \Sigma_g \times V$ such that
#
# $$
# a((\sigma, u), (\tau, v)) = L((\tau, v))
# \quad \forall \ (\tau, v) \in \Sigma_0 \times V,
# $$
#
# where the variational forms $a$ and $L$ are defined as
#
# $$
# \begin{align}
# a((\sigma, u), (\tau, v)) &=
# \int_{\Omega} \sigma \cdot \tau + \nabla \cdot \tau \ u
# + \nabla \cdot \sigma \ v \ {\rm d} x, \\
# L((\tau, v)) &= - \int_{\Omega} f v \ {\rm d} x
# + \int_{\Gamma_D} u_0 \tau \cdot n \ {\rm d} s,
# \end{align}
# $$
# and $\Sigma_g = \{ \tau \in H({\rm div})$ such that $\tau \cdot n|_{\Gamma_N}
# = g \}$ and $V = L^2(\Omega)$.
#
# To discretize the above formulation, two discrete function spaces $\Sigma_h
# \subset \Sigma$ and $V_h \subset V$ are needed to form a mixed function space
# $\Sigma_h \times V_h$. A stable choice of finite element spaces is to let
# $\Sigma_h$ be the Brezzi-Douglas-Marini elements of polynomial order
# $k$ and let $V_h$ be discontinuous elements of polynomial order $k-1$.
#
# We will use the same definitions of functions and boundaries as in the
# demo for {doc}`the Poisson equation <demo_poisson>`. These are:
#
# * $\Omega = [0,1] \times [0,1]$ (a unit square)
# * $\Gamma_{D} = \{(0, y) \cup (1, y) \in \partial \Omega\}$
# * $\Gamma_{N} = \{(x, 0) \cup (x, 1) \in \partial \Omega\}$
# * $u_0 = 0$
# * $g = \sin(5x)$ (flux)
# * $f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)$ (source term)
#
# ## Implementation
# +
try:
from petsc4py import PETSc
import dolfinx
if not dolfinx.has_petsc:
print("This demo requires DOLFINx to be compiled with PETSc enabled.")
exit(0)
except ModuleNotFoundError:
print("This demo requires petsc4py.")
exit(0)
from mpi4py import MPI
import numpy as np
from basix.ufl import element, mixed_element
from dolfinx import default_real_type, fem, io, mesh
from dolfinx.fem.petsc import LinearProblem
from ufl import Measure, SpatialCoordinate, TestFunctions, TrialFunctions, div, exp, inner
msh = mesh.create_unit_square(MPI.COMM_WORLD, 32, 32, mesh.CellType.quadrilateral)
k = 1
Q_el = element("BDMCF", msh.basix_cell(), k, dtype=default_real_type)
P_el = element("DG", msh.basix_cell(), k - 1, dtype=default_real_type)
V_el = mixed_element([Q_el, P_el])
V = fem.functionspace(msh, V_el)
(sigma, u) = TrialFunctions(V)
(tau, v) = TestFunctions(V)
x = SpatialCoordinate(msh)
f = 10.0 * exp(-((x[0] - 0.5) * (x[0] - 0.5) + (x[1] - 0.5) * (x[1] - 0.5)) / 0.02)
dx = Measure("dx", msh)
a = inner(sigma, tau) * dx + inner(u, div(tau)) * dx + inner(div(sigma), v) * dx
L = -inner(f, v) * dx
# Get subspace of V
V0 = V.sub(0)
fdim = msh.topology.dim - 1
facets_top = mesh.locate_entities_boundary(msh, fdim, lambda x: np.isclose(x[1], 1.0))
Q, _ = V0.collapse()
dofs_top = fem.locate_dofs_topological((V0, Q), fdim, facets_top)
def f1(x):
values = np.zeros((2, x.shape[1]))
values[1, :] = np.sin(5 * x[0])
return values
f_h1 = fem.Function(Q)
f_h1.interpolate(f1)
bc_top = fem.dirichletbc(f_h1, dofs_top, V0)
facets_bottom = mesh.locate_entities_boundary(msh, fdim, lambda x: np.isclose(x[1], 0.0))
dofs_bottom = fem.locate_dofs_topological((V0, Q), fdim, facets_bottom)
def f2(x):
values = np.zeros((2, x.shape[1]))
values[1, :] = -np.sin(5 * x[0])
return values
f_h2 = fem.Function(Q)
f_h2.interpolate(f2)
bc_bottom = fem.dirichletbc(f_h2, dofs_bottom, V0)
bcs = [bc_top, bc_bottom]
problem = LinearProblem(
a,
L,
bcs=bcs,
petsc_options={
"ksp_type": "preonly",
"pc_type": "lu",
"pc_factor_mat_solver_type": "superlu_dist",
},
)
try:
w_h = problem.solve()
except PETSc.Error as e: # type: ignore
if e.ierr == 92:
print("The required PETSc solver/preconditioner is not available. Exiting.")
print(e)
exit(0)
else:
raise e
sigma_h, u_h = w_h.split()
with io.XDMFFile(msh.comm, "out_mixed_poisson/u.xdmf", "w") as file:
file.write_mesh(msh)
file.write_function(u_h)
|