File: demo_poisson_matrix_free.py

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-11
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 171; xml: 55
file content (264 lines) | stat: -rw-r--r-- 8,372 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.14.4
#   kernelspec:
#     display_name: Python 3 (ipykernel)
#     language: python
#     name: python3
# ---

# # Matrix-free conjugate gradient solver for the Poisson equation
#
# This demo illustrates how to solve the Poisson equation using a
# matrix-free conjugate gradient (CG) solver. In particular, it
# illustrates how to
#
# - Solve a linear partial differential equation using a matrix-free
# conjugate gradient (CG) solver
# - Create and apply Dirichlet boundary conditions
# - Compute approximation error as compared with a known exact
# solution,
#
# {download}`Python script <./demo_poisson_matrix_free.py>`\
# {download}`Jupyter notebook <./demo_poisson_matrix_free.ipynb>`
#
# ```{note}
# This demo illustrates the use of a matrix-free conjugate gradient
# solver. Many practical problems will also require a preconditioner
# to create an efficient solver. This is not covered here.
# ```
#
# ## Problem definition
#
# For a domain $\Omega \subset \mathbb{R}^n$ with boundary $\partial
# \Omega$, the Poisson equation with Dirichlet boundary conditions reads:
#
# $$
# \begin{align}
# - \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\
#       u &= u_{\rm D} \; {\rm on} \ \partial\Omega.
# \end{align}
# $$
#
# The variational problem reads: Given a suitable function space satisfying
# the essential boundary condition ($u = u_{\rm D} \
# {\rm on} \ \partial\Omega$), $V$, and its homogenised counterpart, $V_0$,
# find $u \in V$ such that
#
# $$
# a(u, v) = L(v) \quad \forall \ v \in V_0,
# $$
#
# where the bilinear and linear formulations are
#
# $$
# \begin{align}
# a(u, v) &:= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x, \\
# L(v)    &:= \int_{\Omega} f v \, {\rm d} x,
# \end{align}
# $$
#
# respectively. In this demo we select:
#
# - $\Omega = [0,1] \times [0,1]$ (a square)
# - $u_{\rm D} = 1 + x^2 + 2y^2$
# - $f = -6$
#
# The function $u_{\rm D}$ is futher the exact solution of the posed problem.
#
# ## Implementation
#
# The modules that will be used are imported:

from mpi4py import MPI

import numpy as np

import dolfinx
import ufl
from dolfinx import fem, la
from ufl import action, dx, grad, inner

# We begin by using {py:func}`create_rectangle
# <dolfinx.mesh.create_rectangle>` to create a rectangular
# {py:class}`Mesh <dolfinx.mesh.Mesh>` of the domain, and creating a
# finite element {py:class}`FunctionSpace <dolfinx.fem.FunctionSpace>`
# on the mesh.

dtype = dolfinx.default_scalar_type
real_type = np.real(dtype(0.0)).dtype
comm = MPI.COMM_WORLD
mesh = dolfinx.mesh.create_rectangle(comm, [[0.0, 0.0], [1.0, 1.0]], [10, 10], dtype=real_type)

# Create function space
degree = 2
V = fem.functionspace(mesh, ("Lagrange", degree))

# The second argument to {py:class}`functionspace
# <dolfinx.fem.functionspace>` is a tuple consisting of `(family,
# degree)`, where `family` is the finite element family, and `degree`
# specifies the polynomial degree. In this case `V` consists of
# third-order, continuous Lagrange finite element functions.
#
# Next, we locate the mesh facets that lie on the domain boundary
# $\partial\Omega$. We do this by first calling
# {py:func}`create_connectivity <dolfinx.mesh.topology.create_connectivity>`
# and then retrieving all facets on the boundary using
# {py:func}`exterior_facet_indices <dolfinx.mesh.exterior_facet_indices>`.

tdim = mesh.topology.dim
mesh.topology.create_connectivity(tdim - 1, tdim)
facets = dolfinx.mesh.exterior_facet_indices(mesh.topology)

# We now find the degrees of freedom that are associated with the boundary
# facets using
# {py:func}`locate_dofs_topological <dolfinx.fem.locate_dofs_topological>`

dofs = fem.locate_dofs_topological(V=V, entity_dim=tdim - 1, entities=facets)

# and use {py:func}`dirichletbc <dolfinx.fem.dirichletbc>` to define the
# essential boundary condition. On the boundary we prescribe the
# {py:class}`Function <dolfinx.fem.Function>` `uD`, which we create by
# interpolating the expression $u_{\rm D}$ in the finite element space
# $V$.

uD = fem.Function(V, dtype=dtype)
uD.interpolate(lambda x: 1 + x[0] ** 2 + 2 * x[1] ** 2)
bc = fem.dirichletbc(value=uD, dofs=dofs)

# Next, we express the variational problem using UFL.

x = ufl.SpatialCoordinate(mesh)
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
f = fem.Constant(mesh, dtype(-6.0))
a = inner(grad(u), grad(v)) * dx
L = inner(f, v) * dx
L_fem = fem.form(L, dtype=dtype)

# For the matrix-free solvers we also define a second linear form `M` as
# the {py:class}`action <ufl.action>` of the bilinear form $a$ on an
# arbitrary {py:class}`Function <dolfinx.fem.Function>` `ui`. This linear
# form is defined as
#
# $$
# M(v) = a(u_i, v) \quad \text{for} \; \ u_i \in V.
# $$

ui = fem.Function(V, dtype=dtype)
M = action(a, ui)
M_fem = fem.form(M, dtype=dtype)

# ### Matrix-free conjugate gradient solver
#
# The right hand side vector $b - A x_{\rm bc}$ is the assembly of the linear
# form $L$ where the essential Dirichlet boundary conditions are implemented
# using lifting. Since we want to avoid assembling the matrix `A`, we compute
# the necessary matrix-vector product using the linear form `M` explicitly.

# Apply lifting: b <- b - A * x_bc
b = fem.assemble_vector(L_fem)
ui.x.array[:] = 0.0
bc.set(ui.x.array, alpha=-1.0)
fem.assemble_vector(b.array, M_fem)
b.scatter_reverse(la.InsertMode.add)

# Set BC dofs to zero on right hand side
bc.set(b.array, alpha=0.0)
b.scatter_forward()

# To implement the matrix-free CG solver using *DOLFINx* vectors, we define the
# function `action_A` to compute the matrix-vector product $y = A x$.


def action_A(x, y):
    # Set coefficient vector of the linear form M and ensure it is updated
    # across processes
    ui.x.array[:] = x.array
    ui.x.scatter_forward()

    # Compute action of A on ui using the linear form M
    y.array[:] = 0.0
    fem.assemble_vector(y.array, M_fem)
    y.scatter_reverse(la.InsertMode.add)

    # Set BC dofs to zero
    bc.set(y.array, alpha=0.0)


# ### Basic conjugate gradient solver
#
# Solves the problem `A x = b`, using the function `action_A` as the operator,
# `x` as an initial guess of the solution, and `b` as the right hand side
# vector. `comm` is the MPI Communicator, `max_iter` is the maximum number of
# iterations, `rtol` is the relative tolerance.


def cg(comm, action_A, x: la.Vector, b: la.Vector, max_iter: int = 200, rtol: float = 1e-6):
    rtol2 = rtol**2

    nr = b.index_map.size_local

    def _global_dot(comm, v0, v1):
        # Only use the owned dofs in vector (up to nr)
        return comm.allreduce(np.vdot(v0[:nr], v1[:nr]), MPI.SUM)

    # Get initial y = A.x
    y = la.vector(b.index_map, 1, dtype)
    action_A(x, y)

    # Copy residual to p
    r = b.array - y.array
    p = la.vector(b.index_map, 1, dtype)
    p.array[:] = r

    # Iterations of CG
    rnorm0 = _global_dot(comm, r, r)
    rnorm = rnorm0
    for k in range(max_iter):
        action_A(p, y)
        alpha = rnorm / _global_dot(comm, p.array, y.array)

        x.array[:] += alpha * p.array
        r -= alpha * y.array
        rnorm_new = _global_dot(comm, r, r)
        beta = rnorm_new / rnorm
        rnorm = rnorm_new
        if comm.rank == 0:
            print(k, np.sqrt(rnorm / rnorm0))
        if rnorm / rnorm0 < rtol2:
            x.scatter_forward()
            return k
        p.array[:] = beta * p.array + r

    raise RuntimeError(f"Solver exceeded max iterations ({max_iter}).")


# This matrix-free solver is now used to compute the finite element solution.
# The finite element solution's approximation error as compared with the
# exact solution is measured in the $L_2$-norm.

rtol = 1e-6
u = fem.Function(V, dtype=dtype)
iter_cg1 = cg(mesh.comm, action_A, u.x, b, max_iter=200, rtol=rtol)

# Set BC values in the solution vector
bc.set(u.x.array, alpha=1.0)


def L2Norm(u):
    val = fem.assemble_scalar(fem.form(inner(u, u) * dx, dtype=dtype))
    return np.sqrt(comm.allreduce(val, op=MPI.SUM))


# Print CG iteration number and error
error_L2_cg1 = L2Norm(u - uD)
if mesh.comm.rank == 0:
    print("Matrix-free CG solver using DOLFINx vectors:")
    print(f"CG iterations until convergence:  {iter_cg1}")
    print(f"L2 approximation error:  {error_L2_cg1:.4e}")