1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
|
# ---
# jupyter:
# jupytext:
# formats: ipynb,py
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.14.1
# kernelspec:
# display_name: Python 3 (DOLFINx complex)
# language: python
# name: python3-complex
# ---
# # Electromagnetic scattering from a wire with scattering boundary conditions
#
# Copyright (C) 2022 Michele Castriotta, Igor Baratta, Jørgen S. Dokken
#
# This demo is implemented in two files: one for the mesh generation
# with gmsh, and one for the variational forms and the solver. It
# illustrates how to:
#
# - Use complex quantities in FEniCSx
# - Setup and solve Maxwell's equations
# - Implement Scattering Boundary Conditions
#
# ## Equations, problem definition and implementation
#
# First of all, let's import the modules that will be used:
# +
import importlib.util
import sys
from mpi4py import MPI
import numpy as np
if importlib.util.find_spec("petsc4py") is not None:
import dolfinx
if not dolfinx.has_petsc:
print("This demo requires DOLFINx to be compiled with PETSc enabled.")
exit(0)
from petsc4py import PETSc
if PETSc.IntType == np.int64 and MPI.COMM_WORLD.size > 1:
print("This solver fails with PETSc and 64-bit integers becaude of memory errors in MUMPS.")
# Note: when PETSc.IntType == np.int32, superlu_dist is used rather
# than MUMPS and does not trigger memory failures.
exit(0)
else:
print("This demo requires petsc4py.")
exit(0)
from scipy.special import h2vp, hankel2, jv, jvp
import ufl
from basix.ufl import element
from dolfinx import default_real_type, default_scalar_type, fem, io, plot
from dolfinx.fem.petsc import LinearProblem
try:
import gmsh
except ModuleNotFoundError:
print("This demo requires gmsh to be installed")
exit(0)
try:
import pyvista
have_pyvista = True
except ModuleNotFoundError:
print("pyvista and pyvistaqt are required to visualise the solution")
have_pyvista = False
# -
# This file defines the `generate_mesh_wire` function, which is used to
# generate the mesh used for scattering boundary conditions demo. The
# mesh is made up by a central circle representing the wire, and an
# external circle, which represents the external boundary of our domain,
# where scattering boundary conditions are applied. The
# `generate_mesh_wire` function takes as input:
# - `radius_wire`: the radius of the wire
# - `radius_dom`: the radius of the external boundary
# - `in_wire_size`: the mesh size at a distance `0.8 * radius_wire` from
# the origin
# - `on_wire_size`: the mesh size on the wire boundary
# - `bkg_size`: the mesh size at a distance `0.9 * radius_dom` from the
# origin
# - `boundary_size`: the mesh size on the external boundary
# - `au_tag`: the tag of the physical group representing the wire
# - `bkg_tag`: the tag of the physical group representing the background
# - `boundary_tag`: the tag of the physical group representing the
# boundary
#
# In particular, `bkg_size` and `boundary_size` are necessary to set a
# finer mesh on the external boundary (to improve the accuracy of the
# scattering efficiency calculation) while keenp.ping a coarser size over
# the rest of the domain.
def generate_mesh_wire(
radius_wire: float,
radius_dom: float,
in_wire_size: float,
on_wire_size: float,
bkg_size: float,
boundary_size: float,
au_tag: int,
bkg_tag: int,
boundary_tag: int,
):
gmsh.model.add("wire")
# A dummy boundary is added for setting a finer mesh
gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_wire * 0.8, angle1=0.0, angle2=2 * np.pi, tag=1)
gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_wire, angle1=0, angle2=2 * np.pi, tag=2)
# A dummy boundary is added for setting a finer mesh
gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_dom * 0.9, angle1=0.0, angle2=2 * np.pi, tag=3)
gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_dom, angle1=0.0, angle2=2 * np.pi, tag=4)
gmsh.model.occ.addCurveLoop([1], tag=1)
gmsh.model.occ.addPlaneSurface([1], tag=1)
gmsh.model.occ.addCurveLoop([2], tag=2)
gmsh.model.occ.addCurveLoop([1], tag=3)
gmsh.model.occ.addPlaneSurface([2, 3], tag=2)
gmsh.model.occ.addCurveLoop([3], tag=4)
gmsh.model.occ.addCurveLoop([2], tag=5)
gmsh.model.occ.addPlaneSurface([4, 5], tag=3)
gmsh.model.occ.addCurveLoop([4], tag=6)
gmsh.model.occ.addCurveLoop([3], tag=7)
gmsh.model.occ.addPlaneSurface([6, 7], tag=4)
gmsh.model.occ.synchronize()
gmsh.model.addPhysicalGroup(2, [1, 2], tag=au_tag)
gmsh.model.addPhysicalGroup(2, [3, 4], tag=bkg_tag)
gmsh.model.addPhysicalGroup(1, [4], tag=boundary_tag)
gmsh.model.mesh.setSize([(0, 1)], size=in_wire_size)
gmsh.model.mesh.setSize([(0, 2)], size=on_wire_size)
gmsh.model.mesh.setSize([(0, 3)], size=bkg_size)
gmsh.model.mesh.setSize([(0, 4)], size=boundary_size)
gmsh.model.mesh.generate(2)
return gmsh.model
# This file contains a function for the calculation of the
# absorption, scattering and extinction efficiencies of a wire
# being hit normally by a TM-polarized electromagnetic wave.
#
# The formula are taken from:
# Milton Kerker, "The Scattering of Light and Other Electromagnetic Radiation",
# Chapter 6, Elsevier, 1969.
#
# ## Implementation
# First of all, let's define the parameters of the problem:
#
# - $n = \sqrt{\varepsilon}$: refractive index of the wire,
# - $n_b$: refractive index of the background medium,
# - $m = n/n_b$: relative refractive index of the wire,
# - $\lambda_0$: wavelength of the electromagnetic wave,
# - $r_w$: radius of the cross-section of the wire,
# - $\alpha = 2\pi r_w n_b/\lambda_0$.
#
# Now, let's define the $a_\nu$ coefficients as:
#
# $$
# \begin{equation}
# a_\nu=\frac{J_\nu(\alpha) J_\nu^{\prime}(m \alpha)-m J_\nu(m \alpha)
# J_\nu^{\prime}(\alpha)}{H_\nu^{(2)}(\alpha) J_\nu^{\prime}(m \alpha)
# -m J_\nu(m \alpha) H_\nu^{(2){\prime}}(\alpha)}
# \end{equation}
# $$
#
# where:
# - $J_\nu(x)$: $\nu$-th order Bessel function of the first kind,
# - $J_\nu^{\prime}(x)$: first derivative with respect to $x$ of
# the $\nu$-th order Bessel function of the first kind,
# - $H_\nu^{(2)}(x)$: $\nu$-th order Hankel function of the second kind,
# - $H_\nu^{(2){\prime}}(x)$: first derivative with respect to $x$ of
# the $\nu$-th order Hankel function of the second kind.
#
# We can now calculate the scattering, extinction and absorption
# efficiencies as:
#
# $$
# & q_{\mathrm{sca}}=(2 / \alpha)\left[\left|a_0\right|^{2}
# +2 \sum_{\nu=1}^{\infty}\left|a_\nu\right|^{2}\right] \\
# & q_{\mathrm{ext}}=(2 / \alpha) \operatorname{Re}\left[ a_0
# +2 \sum_{\nu=1}^{\infty} a_\nu\right] \\
# & q_{\mathrm{abs}} = q_{\mathrm{ext}} - q_{\mathrm{sca}}
# $$
# The functions that we import from `scipy.special` correspond to:
#
# - `jv(nu, x)` ⟷ $J_\nu(x)$,
# - `jvp(nu, x, 1)` ⟷ $J_\nu^{\prime}(x)$,
# - `hankel2(nu, x)` ⟷ $H_\nu^{(2)}(x)$,
# - `h2vp(nu, x, 1)` ⟷ $H_\nu^{(2){\prime}}(x)$.
#
# Next, we define a function for calculating the analytical efficiencies
# in Python. The inputs of the function are:
#
# - `eps` ⟷ $\varepsilon$,
# - `n_bkg` ⟷ $n_b$,
# - `wl0` ⟷ $\lambda_0$,
# - `radius_wire` ⟷ $r_w$.
#
# We also define a nested function for the calculation of $a_l$. For the
# final calculation of the efficiencies, the summation over the different
# orders of the Bessel functions is truncated at $\nu=50$.
# +
def compute_a(nu: int, m: complex, alpha: float) -> float:
J_nu_alpha = jv(nu, alpha)
J_nu_malpha = jv(nu, m * alpha)
J_nu_alpha_p = jvp(nu, alpha, 1)
J_nu_malpha_p = jvp(nu, m * alpha, 1)
H_nu_alpha = hankel2(nu, alpha)
H_nu_alpha_p = h2vp(nu, alpha, 1)
a_nu_num = J_nu_alpha * J_nu_malpha_p - m * J_nu_malpha * J_nu_alpha_p
a_nu_den = H_nu_alpha * J_nu_malpha_p - m * J_nu_malpha * H_nu_alpha_p
return a_nu_num / a_nu_den
def calculate_analytical_efficiencies(
eps: complex, n_bkg: float, wl0: float, radius_wire: float, num_n: int = 50
) -> tuple[float, float, float]:
m = np.sqrt(np.conj(eps)) / n_bkg
alpha = 2 * np.pi * radius_wire / wl0 * n_bkg
c = 2 / alpha
q_ext = c * np.real(compute_a(0, m, alpha))
q_sca = c * np.abs(compute_a(0, m, alpha)) ** 2
for nu in range(1, num_n + 1):
q_ext += c * 2 * np.real(compute_a(nu, m, alpha))
q_sca += c * 2 * np.abs(compute_a(nu, m, alpha)) ** 2
return q_ext - q_sca, q_sca, q_ext
# Since we want to solve time-harmonic Maxwell's equation, we need to
# solve a complex-valued PDE, and therefore need to use PETSc compiled
# with complex numbers.
if not np.issubdtype(default_scalar_type, np.complexfloating):
print("Demo should only be executed with DOLFINx complex mode")
exit(0)
# Now, let's consider an infinite metallic wire immersed in a background
# medium (e.g. vacuum or water). Let's now consider the plane cutting
# the wire perpendicularly to its axis at a generic point. Such plane
# $\Omega=\Omega_{m} \cup\Omega_{b}$ is formed by the cross-section of
# the wire $\Omega_m$ and the background medium $\Omega_{b}$ surrounding
# the wire. Let's consider just the portion of this plane delimited by
# an external circular boundary $\partial \Omega$. We want to calculate
# the electric field $\mathbf{E}_s$ scattered by the wire when a
# background wave $\mathbf{E}_b$ impinges on it. We will consider a
# background plane wave at $\lambda_0$ wavelength, that can be written
# analytically as:
#
# $$
# \mathbf{E}_b = \exp(\mathbf{k}\cdot\mathbf{r})\hat{\mathbf{u}}_p
# $$
#
# with $\mathbf{k} = \frac{2\pi}{\lambda_0}n_b\hat{\mathbf{u}}_k$ being
# the wavevector of the plane wave, pointing along the propagation
# direction, with $\hat{\mathbf{u}}_p$ being the polarization direction,
# and with $\mathbf{r}$ being a point in $\Omega$. We will only consider
# $\hat{\mathbf{u}}_k$ and $\hat{\mathbf{u}}_p$ with components
# belonging to the $\Omega$ domain and perpendicular to each other, i.e.
# $\hat{\mathbf{u}}_k \perp \hat{\mathbf{u}}_p$ (transversality
# condition of plane waves). Using a Cartesian coordinate system for
# $\Omega$, and by defining $k_x = n_bk_0\cos\theta$ and $k_y =
# n_bk_0\sin\theta$, with $\theta$ being the angle defined by the
# propagation direction $\hat{\mathbf{u}}_k$ and the horizontal axis
# $\hat{\mathbf{u}}_x$, we have:
#
# $$
# \mathbf{E}_b = -\sin\theta e^{j (k_xx+k_yy)}\hat{\mathbf{u}}_x
# + \cos\theta e^{j (k_xx+k_yy)}\hat{\mathbf{u}}_y
# $$
#
# The following class implements this functions. The inputs to the
# function are the angle $\theta$, the background refractive index $n_b$
# and the vacuum wavevector $k_0$.
# +
class BackgroundElectricField:
def __init__(self, theta: float, n_bkg: float, k0: complex):
self.theta = theta # incident angle
self.k0 = k0 # vacuum wavevector
self.n_bkg = n_bkg # background refractive index
def eval(
self, x: np.typing.NDArray[np.float64]
) -> tuple[np.typing.NDArray[np.complex128], np.typing.NDArray[np.complex128]]:
kx = self.n_bkg * self.k0 * np.cos(self.theta)
ky = self.n_bkg * self.k0 * np.sin(self.theta)
phi = kx * x[0] + ky * x[1]
ax, ay = np.sin(self.theta), np.cos(self.theta)
return (-ax * np.exp(1j * phi), ay * np.exp(1j * phi))
# -
# The Maxwell's equation for scattering problems takes the following
# form:
#
# $$
# -\nabla \times \nabla \times \mathbf{E}_s+\varepsilon_{r} k_{0}^{2}
# \mathbf{E}_s
# +k_{0}^{2}\left(\varepsilon_{r}-\varepsilon_{b}\right)
# \mathbf{E}_{\mathrm{b}}=0 \textrm{ in } \Omega,
# $$
#
# where $k_0 = 2\pi/\lambda_0$ is the vacuum wavevector of the
# background field, $\varepsilon_b$ is the background relative
# permittivity and $\varepsilon_r$ is the relative permittivity as a
# function of space, i.e.:
#
# $$
# \varepsilon_r = \begin{cases}
# \varepsilon_m & \textrm{on }\Omega_m \\
# \varepsilon_b & \textrm{on }\Omega_b
# \end{cases}
# $$
#
# with $\varepsilon_m$ being the relative permittivity of the metallic
# wire. As reference values, we will consider $\lambda_0 =
# 400\textrm{nm}$ (violet light), $\varepsilon_b = 1.33^2$ (relative
# permittivity of water), and $\varepsilon_m = -1.0782 +
# 5.8089\textrm{j}$ (relative permittivity of gold at $400\textrm{nm}$).
#
# To form a well-determined system, we add boundary conditions on
# $\partial \Omega$. It is common to use scattering boundary conditions
# (ref), which make the boundary transparent for $\mathbf{E}_s$,
# allowing us to restrict the computational boundary to a finite
# $\Omega$ domain. The first-order boundary conditions in the 2D case
# take the following form:
#
# $$\mathbf{n} \times
# \nabla \times \mathbf{E}_s+\left(j k_{0}n_b + \frac{1}{2r}
# \right) \mathbf{n} \times \mathbf{E}_s
# \times \mathbf{n}=0\quad \textrm{ on } \partial \Omega,
# $$
#
#
# with $n_b = \sqrt{\varepsilon_b}$ being the background refractive
# index, $\mathbf{n}$ being the normal vector to $\partial \Omega$, and
# $r = \sqrt{(x-x_s)^2 + (y-y_s)^2}$ being the distance of the $(x, y)$
# point on $\partial\Omega$ from the wire centered in $(x_s, y_s)$. We
# consider a wired centered at the origin, i.e. $r =\sqrt{x^2 + y^2}$.
#
# The radial distance function $r(x)$ and $\nabla \times$ operator for a
# 2D vector (in UFL syntax) is defined below.
#
# +
def radial_distance(x: ufl.SpatialCoordinate):
"""Returns the radial distance from the origin"""
return ufl.sqrt(x[0] ** 2 + x[1] ** 2)
def curl_2d(f: fem.Function):
"""Returns the curl of two 2D vectors as a 3D vector"""
return ufl.as_vector((0, 0, f[1].dx(0) - f[0].dx(1)))
# -
# Next we define some mesh specific parameters. Please notice that the
# length units are normalized with respect to $1\mu m$.
# +
pi = np.pi
epsilon_0 = 8.8541878128 * 10**-12
mu_0 = 4 * pi * 10**-7
# Radius of the wire and of the boundary of the domain
radius_wire = 0.050
radius_dom = 1
# The smaller the mesh_factor, the finer is the mesh
mesh_factor = 1.2
# Mesh size inside the wire
in_wire_size = mesh_factor * 7.0e-3
# Mesh size at the boundary of the wire
on_wire_size = mesh_factor * 3.0e-3
# Mesh size in the background
bkg_size = mesh_factor * 60.0e-3
# Mesh size at the boundary
boundary_size = mesh_factor * 30.0e-3
# Tags for the subdomains
au_tag = 1 # gold wire
bkg_tag = 2 # background
boundary_tag = 3 # boundary
# -
# We generate the mesh using GMSH and convert it to a
# `dolfinx.mesh.Mesh`.
# +
model = None
gmsh.initialize(sys.argv)
if MPI.COMM_WORLD.rank == 0:
model = generate_mesh_wire(
radius_wire,
radius_dom,
in_wire_size,
on_wire_size,
bkg_size,
boundary_size,
au_tag,
bkg_tag,
boundary_tag,
)
model = MPI.COMM_WORLD.bcast(model, root=0)
domain, cell_tags, facet_tags = io.gmshio.model_to_mesh(model, MPI.COMM_WORLD, 0, gdim=2)
gmsh.finalize()
MPI.COMM_WORLD.barrier()
# -
# The mesh is visualized with [PyVista](https://docs.pyvista.org/)
if have_pyvista:
topology, cell_types, geometry = plot.vtk_mesh(domain, 2)
grid = pyvista.UnstructuredGrid(topology, cell_types, geometry)
plotter = pyvista.Plotter()
num_local_cells = domain.topology.index_map(domain.topology.dim).size_local
grid.cell_data["Marker"] = cell_tags.values[cell_tags.indices < num_local_cells]
grid.set_active_scalars("Marker")
plotter.add_mesh(grid, show_edges=True)
plotter.view_xy()
if not pyvista.OFF_SCREEN:
plotter.show()
else:
pyvista.start_xvfb()
figure = plotter.screenshot("wire_mesh.png", window_size=[8000, 8000])
# Now we define some other problem specific parameters:
wl0 = 0.4 # Wavelength of the background field
n_bkg = 1.33 # Background refractive index
eps_bkg = n_bkg**2 # Background relative permittivity
k0 = 2 * np.pi / wl0 # Wavevector of the background field
theta = np.pi / 4 # Angle of incidence of the background field
# We use a function space consisting of degree 3 [Nedelec (first
# kind)](https://defelement.com/elements/nedelec1.html) elements to
# represent the electric field
degree = 3
curl_el = element("N1curl", domain.basix_cell(), degree, dtype=default_real_type)
V = fem.functionspace(domain, curl_el)
# Next, we can interpolate $\mathbf{E}_b$ into the function space $V$:
# +
f = BackgroundElectricField(theta, n_bkg, k0)
Eb = fem.Function(V)
Eb.interpolate(f.eval)
x = ufl.SpatialCoordinate(domain)
r = radial_distance(x)
# Create test and trial functions
Es = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
# Definition of 3d fields for cross and curl operations
Es_3d = ufl.as_vector((Es[0], Es[1], 0))
v_3d = ufl.as_vector((v[0], v[1], 0))
# Measures for subdomains
dx = ufl.Measure("dx", domain, subdomain_data=cell_tags)
ds = ufl.Measure("ds", domain, subdomain_data=facet_tags)
dDom = dx((au_tag, bkg_tag))
dsbc = ds(boundary_tag)
# Normal to the boundary
n = ufl.FacetNormal(domain)
n_3d = ufl.as_vector((n[0], n[1], 0))
# -
# We turn our focus to the permittivity $\varepsilon$. First, we define
# the relative permittivity $\varepsilon_m$ of the gold wire at $400nm$.
# This data can be found in [*Olmon et al.
# 2012*](https://doi.org/10.1103/PhysRevB.86.235147) or at
# [refractiveindex.info](
# https://refractiveindex.info/?shelf=main&book=Au&page=Olmon-sc)):
eps_au = -1.0782 + 1j * 5.8089
# We define a permittivity function $\varepsilon$ that takes the value
# of the gold permittivity $\varepsilon_m$ for cells inside the wire,
# while it takes the value of the background permittivity otherwise:
D = fem.functionspace(domain, ("DG", 0))
eps = fem.Function(D)
au_cells = cell_tags.find(au_tag)
bkg_cells = cell_tags.find(bkg_tag)
eps.x.array[au_cells] = np.full_like(au_cells, eps_au, dtype=eps.x.array.dtype)
eps.x.array[bkg_cells] = np.full_like(bkg_cells, eps_bkg, dtype=eps.x.array.dtype)
eps.x.scatter_forward()
# Next we derive the weak formulation of the Maxwell's equation plus
# with scattering boundary conditions. First, we take the inner products
# of the equations with a complex test function $\mathbf{v}$, and
# integrate the terms over the corresponding domains:
#
# $$
# \begin{align}
# & \int_{\Omega}-\nabla \times( \nabla \times \mathbf{E}_s) \cdot
# \bar{\mathbf{v}}+\varepsilon_{r} k_{0}^{2} \mathbf{E}_s \cdot
# \bar{\mathbf{v}}+k_{0}^{2}\left(\varepsilon_{r}-\varepsilon_b\right)
# \mathbf{E}_b \cdot \bar{\mathbf{v}}~\mathrm{d}x \\
# +& \int_{\partial \Omega}
# (\mathbf{n} \times \nabla \times \mathbf{E}_s) \cdot \bar{\mathbf{v}}
# +\left(j n_bk_{0}+\frac{1}{2r}\right) (\mathbf{n} \times \mathbf{E}_s
# \times \mathbf{n}) \cdot \bar{\mathbf{v}}~\mathrm{d}s=0
# \end{align}
# $$
#
# By using $(\nabla \times \mathbf{A}) \cdot \mathbf{B}=\mathbf{A}
# \cdot(\nabla \times \mathbf{B})+\nabla \cdot(\mathbf{A} \times
# \mathbf{B}),$ we can change the first term into:
#
# $$
# \begin{align}
# & \int_{\Omega}-\nabla \cdot(\nabla\times\mathbf{E}_s \times
# \bar{\mathbf{v}})-\nabla \times \mathbf{E}_s \cdot \nabla
# \times\bar{\mathbf{v}}+\varepsilon_{r} k_{0}^{2} \mathbf{E}_s
# \cdot \bar{\mathbf{v}}+k_{0}^{2}\left(\varepsilon_{r}-\varepsilon_b\right)
# \mathbf{E}_b \cdot \bar{\mathbf{v}}~\mathrm{dx} \\
# +&\int_{\partial \Omega}
# (\mathbf{n} \times \nabla \times \mathbf{E}_s) \cdot \bar{\mathbf{v}}
# +\left(j n_bk_{0}+\frac{1}{2r}\right) (\mathbf{n} \times \mathbf{E}_s
# \times \mathbf{n}) \cdot \bar{\mathbf{v}}~\mathrm{d}s=0,
# \end{align}
# $$
#
# using the divergence theorem
# $\int_\Omega\nabla\cdot\mathbf{F}~\mathrm{d}x = \int_{\partial\Omega}
# \mathbf{F}\cdot\mathbf{n}~\mathrm{d}s$, we can write:
#
# $$
# \begin{align}
# & \int_{\Omega}-(\nabla \times \mathbf{E}_s) \cdot (\nabla \times
# \bar{\mathbf{v}})+\varepsilon_{r} k_{0}^{2} \mathbf{E}_s \cdot
# \bar{\mathbf{v}}+k_{0}^{2}\left(\varepsilon_{r}-\varepsilon_b\right)
# \mathbf{E}_b \cdot \bar{\mathbf{v}}~\mathrm{d}x \\
# +&\int_{\partial \Omega}
# -(\nabla\times\mathbf{E}_s \times \bar{\mathbf{v}})\cdot\mathbf{n}
# + (\mathbf{n} \times \nabla \times \mathbf{E}_s) \cdot \bar{\mathbf{v}}
# +\left(j n_bk_{0}+\frac{1}{2r}\right) (\mathbf{n} \times \mathbf{E}_s
# \times \mathbf{n}) \cdot \bar{\mathbf{v}}~\mathrm{d}s=0.
# \end{align}
# $$
#
# Cancelling $-(\nabla\times\mathbf{E}_s \times \bar{\mathbf{V}})
# \cdot\mathbf{n}$ and $\mathbf{n} \times \nabla \times \mathbf{E}_s
# \cdot \bar{\mathbf{V}}$ and rearrange $\left((\mathbf{n} \times \mathbf{E}_s)
# \times \mathbf{n}\right) \cdot \bar{\mathbf{v}}$ to $ (\mathbf{E}_s \times\mathbf{n})
# \cdot (\bar{\mathbf{v}} \times \mathbf{n})$ using the triple product rule $\mathbf{A}
# \cdot(\mathbf{B} \times \mathbf{C})=\mathbf{B} \cdot(\mathbf{C} \times
# \mathbf{A})=\mathbf{C} \cdot(\mathbf{A} \times \mathbf{B})$, we get:
#
# $$
# \begin{align}
# & \int_{\Omega}-(\nabla \times \mathbf{E}_s) \cdot (\nabla \times
# \bar{\mathbf{v}})+\varepsilon_{r} k_{0}^{2} \mathbf{E}_s \cdot
# \bar{\mathbf{v}}+k_{0}^{2}\left(\varepsilon_{r}-\varepsilon_b\right)
# \mathbf{E}_b \cdot \bar{\mathbf{v}}~\mathrm{d}x \\
# +&\int_{\partial \Omega}
# \left(j n_bk_{0}+\frac{1}{2r}\right)( \mathbf{n} \times \mathbf{E}_s \times
# \mathbf{n}) \cdot \bar{\mathbf{v}} ~\mathrm{d} s = 0.
# \end{align}
# $$
#
# We use the [UFL](https://github.com/FEniCS/ufl/) to implement the
# residual
# Weak form
F = (
-ufl.inner(ufl.curl(Es), ufl.curl(v)) * dDom
+ eps * (k0**2) * ufl.inner(Es, v) * dDom
+ (k0**2) * (eps - eps_bkg) * ufl.inner(Eb, v) * dDom
+ (1j * k0 * n_bkg + 1 / (2 * r))
* ufl.inner(ufl.cross(Es_3d, n_3d), ufl.cross(v_3d, n_3d))
* dsbc
)
# We split the residual into a sesquilinear (lhs) and linear (rhs) form
# and solve the problem. We store the scattered field $\mathbf{E}_s$ as
# `Esh`:
a, L = ufl.lhs(F), ufl.rhs(F)
problem = LinearProblem(a, L, bcs=[], petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
Esh = problem.solve()
# We save the solution as an [ADIOS2
# bp](https://adios2.readthedocs.io/en/latest/ecosystem/visualization.html)
# folder. In order to do so, we need to interpolate our solution
# discretized with Nedelec elements into a suitable discontinuous
# Lagrange space.
# +
gdim = domain.geometry.dim
V_dg = fem.functionspace(domain, ("Discontinuous Lagrange", degree, (gdim,)))
Esh_dg = fem.Function(V_dg)
Esh_dg.interpolate(Esh)
if hasattr(io,"VTXWriter"):
with io.VTXWriter(domain.comm, "Esh.bp", Esh_dg) as vtx:
vtx.write(0.0)
else:
print("Cannot write Esh.bp: VTXWriter (adios2) is not available")
# -
# We visualize the solution using PyVista. For more information about
# saving and visualizing vector fields discretized with Nedelec
# elements, check [this](
# https://docs.fenicsproject.org/dolfinx/main/python/demos/demo_interpolation-io.html)
# DOLFINx demo.
if have_pyvista:
V_cells, V_types, V_x = plot.vtk_mesh(V_dg)
V_grid = pyvista.UnstructuredGrid(V_cells, V_types, V_x)
Esh_values = np.zeros((V_x.shape[0], 3), dtype=np.float64)
Esh_values[:, : domain.topology.dim] = Esh_dg.x.array.reshape(
V_x.shape[0], domain.topology.dim
).real
V_grid.point_data["u"] = Esh_values
plotter = pyvista.Plotter()
plotter.add_text("magnitude", font_size=12, color="black")
plotter.add_mesh(V_grid.copy(), show_edges=True)
plotter.view_xy()
plotter.link_views()
if not pyvista.OFF_SCREEN:
plotter.show()
else:
pyvista.start_xvfb()
plotter.screenshot("Esh.png", window_size=[800, 800])
# Next we can calculate the total electric field
# $\mathbf{E}=\mathbf{E}_s+\mathbf{E}_b$ and save it.
# +
E = fem.Function(V)
E.x.array[:] = Eb.x.array[:] + Esh.x.array[:]
E_dg = fem.Function(V_dg)
E_dg.interpolate(E)
if hasattr(io,"VTXWriter"):
with io.VTXWriter(domain.comm, "E.bp", E_dg) as vtx:
vtx.write(0.0)
else:
print("Cannot write E.bp: VTXWriter (adios2) is not available")
# -
# We validate our numerical solution by computing the absorption,
# scattering and extinction efficiencies, which are quantities that
# define how much light is absorbed and scattered by the wire. First of
# all, we calculate the analytical efficiencies with the
# `calculate_analytical_efficiencies` function defined in a separate
# file:
# Calculation of analytical efficiencies
q_abs_analyt, q_sca_analyt, q_ext_analyt = calculate_analytical_efficiencies(
eps_au, n_bkg, wl0, radius_wire
)
# Now we can calculate the numerical efficiencies. The formula for the
# absorption, scattering and extinction are:
#
# $$
# \begin{align}
# & Q_{abs} = \operatorname{Re}\left(\int_{\Omega_{m}} \frac{1}{2}
# \frac{\operatorname{Im}(\varepsilon_m)k_0}{Z_0n_b}
# \mathbf{E}\cdot\hat{\mathbf{E}}dx\right) \\
# & Q_{sca} = \operatorname{Re}\left(\int_{\partial\Omega} \frac{1}{2}
# \left(\mathbf{E}_s\times\bar{\mathbf{H}}_s\right)
# \cdot\mathbf{n}ds\right)\\ \\
# & Q_{ext} = Q_{abs} + Q_{sca},
# \end{align}
# $$
#
# with $Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}}$ being the vacuum
# impedance, and $\mathbf{H}_s =
# -j\frac{1}{Z_0k_0n_b}\nabla\times\mathbf{E}_s$ being the scattered
# magnetic field. We can then normalize these values over the intensity
# of the electromagnetic field $I_0$ and the geometrical cross section
# of the wire, $\sigma_{gcs} = 2r_w$:
#
# $$
# \begin{align}
# & q_{abs} = \frac{Q_{abs}}{I_0\sigma_{gcs}} \\
# & q_{sca} = \frac{Q_{sca}}{I_0\sigma_{gcs}} \\
# & q_{ext} = q_{abs} + q_{sca}.
# \end{align}
# $$
#
# We can calculate these values in the following way:
# +
# Vacuum impedance
Z0 = np.sqrt(mu_0 / epsilon_0)
# Magnetic field H
Hsh_3d = -1j * curl_2d(Esh) / (Z0 * k0 * n_bkg)
Esh_3d = ufl.as_vector((Esh[0], Esh[1], 0))
E_3d = ufl.as_vector((E[0], E[1], 0))
# Intensity of the electromagnetic fields I0 = 0.5*E0**2/Z0 E0 =
# np.sqrt(ax**2 + ay**2) = 1, see background_electric_field
I0 = 0.5 / Z0
# Geometrical cross section of the wire
gcs = 2 * radius_wire
# Quantities for the calculation of efficiencies
P = 0.5 * ufl.inner(ufl.cross(Esh_3d, ufl.conj(Hsh_3d)), n_3d)
Q = 0.5 * np.imag(eps_au) * k0 * (ufl.inner(E_3d, E_3d)) / Z0 / n_bkg
# Define integration domain for the wire
dAu = dx(au_tag)
# Normalized absorption efficiency
q_abs_fenics_proc = (fem.assemble_scalar(fem.form(Q * dAu)) / gcs / I0).real
q_abs_fenics = domain.comm.allreduce(q_abs_fenics_proc, op=MPI.SUM)
# Normalized scattering efficiency
q_sca_fenics_proc = (fem.assemble_scalar(fem.form(P * dsbc)) / gcs / I0).real
q_sca_fenics = domain.comm.allreduce(q_sca_fenics_proc, op=MPI.SUM)
# Extinction efficiency
q_ext_fenics = q_abs_fenics + q_sca_fenics
# Error calculation
err_abs = np.abs(q_abs_analyt - q_abs_fenics) / q_abs_analyt
err_sca = np.abs(q_sca_analyt - q_sca_fenics) / q_sca_analyt
err_ext = np.abs(q_ext_analyt - q_ext_fenics) / q_ext_analyt
# Check if errors are smaller than 1%
assert err_abs < 0.01
assert err_sca < 0.01
assert err_ext < 0.01
if domain.comm.rank == 0:
print()
print(f"The analytical absorption efficiency is {q_abs_analyt}")
print(f"The numerical absorption efficiency is {q_abs_fenics}")
print(f"The error is {err_abs * 100}%")
print()
print(f"The analytical scattering efficiency is {q_sca_analyt}")
print(f"The numerical scattering efficiency is {q_sca_fenics}")
print(f"The error is {err_sca * 100}%")
print()
print(f"The analytical extinction efficiency is {q_ext_analyt}")
print(f"The numerical extinction efficiency is {q_ext_fenics}")
print(f"The error is {err_ext * 100}%")
|