File: demo_scattering_boundary_conditions.py

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-11
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 171; xml: 55
file content (791 lines) | stat: -rw-r--r-- 27,585 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
# ---
# jupyter:
#   jupytext:
#     formats: ipynb,py
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.14.1
#   kernelspec:
#     display_name: Python 3 (DOLFINx complex)
#     language: python
#     name: python3-complex
# ---

# # Electromagnetic scattering from a wire with scattering boundary conditions
#
# Copyright (C) 2022 Michele Castriotta, Igor Baratta, Jørgen S. Dokken
#
# This demo is implemented in two files: one for the mesh generation
# with gmsh, and one for the variational forms and the solver. It
# illustrates how to:
#
# - Use complex quantities in FEniCSx
# - Setup and solve Maxwell's equations
# - Implement Scattering Boundary Conditions
#
# ## Equations, problem definition and implementation
#
# First of all, let's import the modules that will be used:

# +
import importlib.util
import sys

from mpi4py import MPI

import numpy as np

if importlib.util.find_spec("petsc4py") is not None:
    import dolfinx

    if not dolfinx.has_petsc:
        print("This demo requires DOLFINx to be compiled with PETSc enabled.")
        exit(0)

    from petsc4py import PETSc

    if PETSc.IntType == np.int64 and MPI.COMM_WORLD.size > 1:
        print("This solver fails with PETSc and 64-bit integers becaude of memory errors in MUMPS.")
        # Note: when PETSc.IntType == np.int32, superlu_dist is used rather
        # than MUMPS and does not trigger memory failures.
        exit(0)
else:
    print("This demo requires petsc4py.")
    exit(0)


from scipy.special import h2vp, hankel2, jv, jvp

import ufl
from basix.ufl import element
from dolfinx import default_real_type, default_scalar_type, fem, io, plot
from dolfinx.fem.petsc import LinearProblem

try:
    import gmsh
except ModuleNotFoundError:
    print("This demo requires gmsh to be installed")
    exit(0)

try:
    import pyvista

    have_pyvista = True
except ModuleNotFoundError:
    print("pyvista and pyvistaqt are required to visualise the solution")
    have_pyvista = False


# -
# This file defines the `generate_mesh_wire` function, which is used to
# generate the mesh used for scattering boundary conditions demo. The
# mesh is made up by a central circle representing the wire, and an
# external circle, which represents the external boundary of our domain,
# where scattering boundary conditions are applied. The
# `generate_mesh_wire` function takes as input:

# - `radius_wire`: the radius of the wire
# - `radius_dom`: the radius of the external boundary
# - `in_wire_size`: the mesh size at a distance `0.8 * radius_wire` from
#   the origin
# - `on_wire_size`: the mesh size on the wire boundary
# - `bkg_size`: the mesh size at a distance `0.9 * radius_dom` from the
#   origin
# - `boundary_size`: the mesh size on the external boundary
# - `au_tag`: the tag of the physical group representing the wire
# - `bkg_tag`: the tag of the physical group representing the background
# - `boundary_tag`: the tag of the physical group representing the
#   boundary
#
# In particular, `bkg_size` and `boundary_size` are necessary to set a
# finer mesh on the external boundary (to improve the accuracy of the
# scattering efficiency calculation) while keenp.ping a coarser size over
# the rest of the domain.


def generate_mesh_wire(
    radius_wire: float,
    radius_dom: float,
    in_wire_size: float,
    on_wire_size: float,
    bkg_size: float,
    boundary_size: float,
    au_tag: int,
    bkg_tag: int,
    boundary_tag: int,
):
    gmsh.model.add("wire")

    # A dummy boundary is added for setting a finer mesh
    gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_wire * 0.8, angle1=0.0, angle2=2 * np.pi, tag=1)
    gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_wire, angle1=0, angle2=2 * np.pi, tag=2)

    # A dummy boundary is added for setting a finer mesh
    gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_dom * 0.9, angle1=0.0, angle2=2 * np.pi, tag=3)
    gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_dom, angle1=0.0, angle2=2 * np.pi, tag=4)

    gmsh.model.occ.addCurveLoop([1], tag=1)
    gmsh.model.occ.addPlaneSurface([1], tag=1)

    gmsh.model.occ.addCurveLoop([2], tag=2)
    gmsh.model.occ.addCurveLoop([1], tag=3)
    gmsh.model.occ.addPlaneSurface([2, 3], tag=2)

    gmsh.model.occ.addCurveLoop([3], tag=4)
    gmsh.model.occ.addCurveLoop([2], tag=5)
    gmsh.model.occ.addPlaneSurface([4, 5], tag=3)

    gmsh.model.occ.addCurveLoop([4], tag=6)
    gmsh.model.occ.addCurveLoop([3], tag=7)
    gmsh.model.occ.addPlaneSurface([6, 7], tag=4)

    gmsh.model.occ.synchronize()

    gmsh.model.addPhysicalGroup(2, [1, 2], tag=au_tag)
    gmsh.model.addPhysicalGroup(2, [3, 4], tag=bkg_tag)

    gmsh.model.addPhysicalGroup(1, [4], tag=boundary_tag)

    gmsh.model.mesh.setSize([(0, 1)], size=in_wire_size)
    gmsh.model.mesh.setSize([(0, 2)], size=on_wire_size)
    gmsh.model.mesh.setSize([(0, 3)], size=bkg_size)
    gmsh.model.mesh.setSize([(0, 4)], size=boundary_size)

    gmsh.model.mesh.generate(2)

    return gmsh.model


# This file contains a function for the calculation of the
# absorption, scattering and extinction efficiencies of a wire
# being hit normally by a TM-polarized electromagnetic wave.
#
# The formula are taken from:
# Milton Kerker, "The Scattering of Light and Other Electromagnetic Radiation",
# Chapter 6, Elsevier, 1969.
#
# ## Implementation
# First of all, let's define the parameters of the problem:
#
# - $n = \sqrt{\varepsilon}$: refractive index of the wire,
# - $n_b$: refractive index of the background medium,
# - $m = n/n_b$: relative refractive index of the wire,
# - $\lambda_0$: wavelength of the electromagnetic wave,
# - $r_w$: radius of the cross-section of the wire,
# - $\alpha = 2\pi r_w n_b/\lambda_0$.
#
# Now, let's define the $a_\nu$ coefficients as:
#
# $$
# \begin{equation}
# a_\nu=\frac{J_\nu(\alpha) J_\nu^{\prime}(m \alpha)-m J_\nu(m \alpha)
# J_\nu^{\prime}(\alpha)}{H_\nu^{(2)}(\alpha) J_\nu^{\prime}(m \alpha)
# -m J_\nu(m \alpha) H_\nu^{(2){\prime}}(\alpha)}
# \end{equation}
# $$
#
# where:
# - $J_\nu(x)$: $\nu$-th order Bessel function of the first kind,
# - $J_\nu^{\prime}(x)$: first derivative with respect to $x$ of
# the $\nu$-th order Bessel function of the first kind,
# - $H_\nu^{(2)}(x)$: $\nu$-th order Hankel function of the second kind,
# - $H_\nu^{(2){\prime}}(x)$: first derivative with respect to $x$ of
# the $\nu$-th order Hankel function of the second kind.
#
# We can now calculate the scattering, extinction and absorption
# efficiencies as:
#
# $$
# & q_{\mathrm{sca}}=(2 / \alpha)\left[\left|a_0\right|^{2}
# +2 \sum_{\nu=1}^{\infty}\left|a_\nu\right|^{2}\right] \\
# & q_{\mathrm{ext}}=(2 / \alpha) \operatorname{Re}\left[ a_0
# +2 \sum_{\nu=1}^{\infty} a_\nu\right] \\
# & q_{\mathrm{abs}} = q_{\mathrm{ext}} - q_{\mathrm{sca}}
# $$

# The functions that we import from `scipy.special` correspond to:
#
# - `jv(nu, x)` ⟷ $J_\nu(x)$,
# - `jvp(nu, x, 1)` ⟷ $J_\nu^{\prime}(x)$,
# - `hankel2(nu, x)` ⟷ $H_\nu^{(2)}(x)$,
# - `h2vp(nu, x, 1)` ⟷ $H_\nu^{(2){\prime}}(x)$.
#
# Next, we define a function for calculating the analytical efficiencies
# in Python. The inputs of the function are:
#
# - `eps` ⟷ $\varepsilon$,
# - `n_bkg` ⟷ $n_b$,
# - `wl0` ⟷ $\lambda_0$,
# - `radius_wire` ⟷ $r_w$.
#
# We also define a nested function for the calculation of $a_l$. For the
# final calculation of the efficiencies, the summation over the different
# orders of the Bessel functions is truncated at $\nu=50$.


# +
def compute_a(nu: int, m: complex, alpha: float) -> float:
    J_nu_alpha = jv(nu, alpha)
    J_nu_malpha = jv(nu, m * alpha)
    J_nu_alpha_p = jvp(nu, alpha, 1)
    J_nu_malpha_p = jvp(nu, m * alpha, 1)

    H_nu_alpha = hankel2(nu, alpha)
    H_nu_alpha_p = h2vp(nu, alpha, 1)

    a_nu_num = J_nu_alpha * J_nu_malpha_p - m * J_nu_malpha * J_nu_alpha_p
    a_nu_den = H_nu_alpha * J_nu_malpha_p - m * J_nu_malpha * H_nu_alpha_p
    return a_nu_num / a_nu_den


def calculate_analytical_efficiencies(
    eps: complex, n_bkg: float, wl0: float, radius_wire: float, num_n: int = 50
) -> tuple[float, float, float]:
    m = np.sqrt(np.conj(eps)) / n_bkg
    alpha = 2 * np.pi * radius_wire / wl0 * n_bkg
    c = 2 / alpha
    q_ext = c * np.real(compute_a(0, m, alpha))
    q_sca = c * np.abs(compute_a(0, m, alpha)) ** 2
    for nu in range(1, num_n + 1):
        q_ext += c * 2 * np.real(compute_a(nu, m, alpha))
        q_sca += c * 2 * np.abs(compute_a(nu, m, alpha)) ** 2
    return q_ext - q_sca, q_sca, q_ext


# Since we want to solve time-harmonic Maxwell's equation, we need to
# solve a complex-valued PDE, and therefore need to use PETSc compiled
# with complex numbers.

if not np.issubdtype(default_scalar_type, np.complexfloating):
    print("Demo should only be executed with DOLFINx complex mode")
    exit(0)


# Now, let's consider an infinite metallic wire immersed in a background
# medium (e.g. vacuum or water). Let's now consider the plane cutting
# the wire perpendicularly to its axis at a generic point. Such plane
# $\Omega=\Omega_{m} \cup\Omega_{b}$ is formed by the cross-section of
# the wire $\Omega_m$ and the background medium $\Omega_{b}$ surrounding
# the wire. Let's consider just the portion of this plane delimited by
# an external circular boundary $\partial \Omega$. We want to calculate
# the electric field $\mathbf{E}_s$ scattered by the wire when a
# background wave $\mathbf{E}_b$ impinges on it. We will consider a
# background plane wave at $\lambda_0$ wavelength, that can be written
# analytically as:
#
# $$
# \mathbf{E}_b = \exp(\mathbf{k}\cdot\mathbf{r})\hat{\mathbf{u}}_p
# $$
#
# with $\mathbf{k} = \frac{2\pi}{\lambda_0}n_b\hat{\mathbf{u}}_k$ being
# the wavevector of the plane wave, pointing along the propagation
# direction, with $\hat{\mathbf{u}}_p$ being the polarization direction,
# and with $\mathbf{r}$ being a point in $\Omega$. We will only consider
# $\hat{\mathbf{u}}_k$ and $\hat{\mathbf{u}}_p$ with components
# belonging to the $\Omega$ domain and perpendicular to each other, i.e.
# $\hat{\mathbf{u}}_k \perp \hat{\mathbf{u}}_p$ (transversality
# condition of plane waves). Using a Cartesian coordinate system for
# $\Omega$, and by defining $k_x = n_bk_0\cos\theta$ and $k_y =
# n_bk_0\sin\theta$, with $\theta$ being the angle defined by the
# propagation direction $\hat{\mathbf{u}}_k$ and the horizontal axis
# $\hat{\mathbf{u}}_x$, we have:
#
# $$
# \mathbf{E}_b = -\sin\theta e^{j (k_xx+k_yy)}\hat{\mathbf{u}}_x
# + \cos\theta e^{j (k_xx+k_yy)}\hat{\mathbf{u}}_y
# $$
#
# The following class implements this functions. The inputs to the
# function are the angle $\theta$, the background refractive index $n_b$
# and the vacuum wavevector $k_0$.

# +


class BackgroundElectricField:
    def __init__(self, theta: float, n_bkg: float, k0: complex):
        self.theta = theta  # incident angle
        self.k0 = k0  # vacuum wavevector
        self.n_bkg = n_bkg  # background refractive index

    def eval(
        self, x: np.typing.NDArray[np.float64]
    ) -> tuple[np.typing.NDArray[np.complex128], np.typing.NDArray[np.complex128]]:
        kx = self.n_bkg * self.k0 * np.cos(self.theta)
        ky = self.n_bkg * self.k0 * np.sin(self.theta)
        phi = kx * x[0] + ky * x[1]
        ax, ay = np.sin(self.theta), np.cos(self.theta)
        return (-ax * np.exp(1j * phi), ay * np.exp(1j * phi))


# -

# The Maxwell's equation for scattering problems takes the following
# form:
#
# $$
# -\nabla \times \nabla \times \mathbf{E}_s+\varepsilon_{r} k_{0}^{2}
# \mathbf{E}_s
# +k_{0}^{2}\left(\varepsilon_{r}-\varepsilon_{b}\right)
# \mathbf{E}_{\mathrm{b}}=0 \textrm{ in } \Omega,
# $$
#
# where $k_0 = 2\pi/\lambda_0$ is the vacuum wavevector of the
# background field, $\varepsilon_b$ is the background relative
# permittivity and $\varepsilon_r$ is the relative permittivity as a
# function of space, i.e.:
#
# $$
# \varepsilon_r = \begin{cases}
# \varepsilon_m & \textrm{on }\Omega_m \\
# \varepsilon_b & \textrm{on }\Omega_b
# \end{cases}
# $$
#
# with $\varepsilon_m$ being the relative permittivity of the metallic
# wire. As reference values, we will consider $\lambda_0 =
# 400\textrm{nm}$ (violet light), $\varepsilon_b = 1.33^2$ (relative
# permittivity of water), and $\varepsilon_m = -1.0782 +
# 5.8089\textrm{j}$ (relative permittivity of gold at $400\textrm{nm}$).
#
# To form a well-determined system, we add boundary conditions on
# $\partial \Omega$. It is common to use scattering boundary conditions
# (ref), which make the boundary transparent for $\mathbf{E}_s$,
# allowing us to restrict the computational boundary to a finite
# $\Omega$ domain. The first-order boundary conditions in the 2D case
# take the following form:
#
# $$\mathbf{n} \times
# \nabla \times \mathbf{E}_s+\left(j k_{0}n_b + \frac{1}{2r}
# \right) \mathbf{n} \times \mathbf{E}_s
# \times \mathbf{n}=0\quad \textrm{ on } \partial \Omega,
# $$
#
#
# with $n_b = \sqrt{\varepsilon_b}$ being the background refractive
# index, $\mathbf{n}$ being the normal vector to $\partial \Omega$, and
# $r = \sqrt{(x-x_s)^2 + (y-y_s)^2}$ being the distance of the $(x, y)$
# point on $\partial\Omega$ from the wire centered in $(x_s, y_s)$. We
# consider a wired centered at the origin, i.e. $r =\sqrt{x^2 + y^2}$.
#
# The radial distance function $r(x)$ and $\nabla \times$ operator for a
# 2D vector (in UFL syntax) is defined below.
#


# +
def radial_distance(x: ufl.SpatialCoordinate):
    """Returns the radial distance from the origin"""
    return ufl.sqrt(x[0] ** 2 + x[1] ** 2)


def curl_2d(f: fem.Function):
    """Returns the curl of two 2D vectors as a 3D vector"""
    return ufl.as_vector((0, 0, f[1].dx(0) - f[0].dx(1)))


# -

# Next we define some mesh specific parameters. Please notice that the
# length units are normalized with respect to $1\mu m$.


# +
pi = np.pi
epsilon_0 = 8.8541878128 * 10**-12
mu_0 = 4 * pi * 10**-7

# Radius of the wire and of the boundary of the domain
radius_wire = 0.050
radius_dom = 1

# The smaller the mesh_factor, the finer is the mesh
mesh_factor = 1.2

# Mesh size inside the wire
in_wire_size = mesh_factor * 7.0e-3

# Mesh size at the boundary of the wire
on_wire_size = mesh_factor * 3.0e-3

# Mesh size in the background
bkg_size = mesh_factor * 60.0e-3

# Mesh size at the boundary
boundary_size = mesh_factor * 30.0e-3

# Tags for the subdomains
au_tag = 1  # gold wire
bkg_tag = 2  # background
boundary_tag = 3  # boundary
# -

# We generate the mesh using GMSH and convert it to a
# `dolfinx.mesh.Mesh`.

# +
model = None
gmsh.initialize(sys.argv)
if MPI.COMM_WORLD.rank == 0:
    model = generate_mesh_wire(
        radius_wire,
        radius_dom,
        in_wire_size,
        on_wire_size,
        bkg_size,
        boundary_size,
        au_tag,
        bkg_tag,
        boundary_tag,
    )

model = MPI.COMM_WORLD.bcast(model, root=0)
domain, cell_tags, facet_tags = io.gmshio.model_to_mesh(model, MPI.COMM_WORLD, 0, gdim=2)

gmsh.finalize()
MPI.COMM_WORLD.barrier()
# -

# The mesh is visualized with [PyVista](https://docs.pyvista.org/)

if have_pyvista:
    topology, cell_types, geometry = plot.vtk_mesh(domain, 2)
    grid = pyvista.UnstructuredGrid(topology, cell_types, geometry)
    plotter = pyvista.Plotter()
    num_local_cells = domain.topology.index_map(domain.topology.dim).size_local
    grid.cell_data["Marker"] = cell_tags.values[cell_tags.indices < num_local_cells]
    grid.set_active_scalars("Marker")
    plotter.add_mesh(grid, show_edges=True)
    plotter.view_xy()
    if not pyvista.OFF_SCREEN:
        plotter.show()
    else:
        pyvista.start_xvfb()
        figure = plotter.screenshot("wire_mesh.png", window_size=[8000, 8000])

# Now we define some other problem specific parameters:

wl0 = 0.4  # Wavelength of the background field
n_bkg = 1.33  # Background refractive index
eps_bkg = n_bkg**2  # Background relative permittivity
k0 = 2 * np.pi / wl0  # Wavevector of the background field
theta = np.pi / 4  # Angle of incidence of the background field

# We use a function space consisting of degree 3 [Nedelec (first
# kind)](https://defelement.com/elements/nedelec1.html) elements to
# represent the electric field

degree = 3
curl_el = element("N1curl", domain.basix_cell(), degree, dtype=default_real_type)
V = fem.functionspace(domain, curl_el)

# Next, we can interpolate $\mathbf{E}_b$ into the function space $V$:

# +
f = BackgroundElectricField(theta, n_bkg, k0)
Eb = fem.Function(V)
Eb.interpolate(f.eval)

x = ufl.SpatialCoordinate(domain)
r = radial_distance(x)

# Create test and trial functions
Es = ufl.TrialFunction(V)
v = ufl.TestFunction(V)

# Definition of 3d fields for cross and curl operations
Es_3d = ufl.as_vector((Es[0], Es[1], 0))
v_3d = ufl.as_vector((v[0], v[1], 0))

# Measures for subdomains
dx = ufl.Measure("dx", domain, subdomain_data=cell_tags)
ds = ufl.Measure("ds", domain, subdomain_data=facet_tags)
dDom = dx((au_tag, bkg_tag))
dsbc = ds(boundary_tag)

# Normal to the boundary
n = ufl.FacetNormal(domain)
n_3d = ufl.as_vector((n[0], n[1], 0))
# -

# We turn our focus to the permittivity $\varepsilon$. First, we define
# the relative permittivity $\varepsilon_m$ of the gold wire at $400nm$.
# This data can be found in [*Olmon et al.
# 2012*](https://doi.org/10.1103/PhysRevB.86.235147) or at
# [refractiveindex.info](
# https://refractiveindex.info/?shelf=main&book=Au&page=Olmon-sc)):

eps_au = -1.0782 + 1j * 5.8089

# We define a permittivity function $\varepsilon$ that takes the value
# of the gold permittivity $\varepsilon_m$ for cells inside the wire,
# while it takes the value of the background permittivity otherwise:

D = fem.functionspace(domain, ("DG", 0))
eps = fem.Function(D)
au_cells = cell_tags.find(au_tag)
bkg_cells = cell_tags.find(bkg_tag)
eps.x.array[au_cells] = np.full_like(au_cells, eps_au, dtype=eps.x.array.dtype)
eps.x.array[bkg_cells] = np.full_like(bkg_cells, eps_bkg, dtype=eps.x.array.dtype)
eps.x.scatter_forward()

# Next we derive the weak formulation of the Maxwell's equation plus
# with scattering boundary conditions. First, we take the inner products
# of the equations with a complex test function $\mathbf{v}$, and
# integrate the terms over the corresponding domains:
#
# $$
# \begin{align}
# & \int_{\Omega}-\nabla \times( \nabla \times \mathbf{E}_s) \cdot
# \bar{\mathbf{v}}+\varepsilon_{r} k_{0}^{2} \mathbf{E}_s \cdot
# \bar{\mathbf{v}}+k_{0}^{2}\left(\varepsilon_{r}-\varepsilon_b\right)
# \mathbf{E}_b \cdot \bar{\mathbf{v}}~\mathrm{d}x \\
# +& \int_{\partial \Omega}
# (\mathbf{n} \times \nabla \times \mathbf{E}_s) \cdot \bar{\mathbf{v}}
# +\left(j n_bk_{0}+\frac{1}{2r}\right) (\mathbf{n} \times \mathbf{E}_s
# \times \mathbf{n}) \cdot \bar{\mathbf{v}}~\mathrm{d}s=0
# \end{align}
# $$
#
# By using $(\nabla \times \mathbf{A}) \cdot \mathbf{B}=\mathbf{A}
# \cdot(\nabla \times \mathbf{B})+\nabla \cdot(\mathbf{A} \times
# \mathbf{B}),$ we can change the first term into:
#
# $$
# \begin{align}
# & \int_{\Omega}-\nabla \cdot(\nabla\times\mathbf{E}_s \times
# \bar{\mathbf{v}})-\nabla \times \mathbf{E}_s \cdot \nabla
# \times\bar{\mathbf{v}}+\varepsilon_{r} k_{0}^{2} \mathbf{E}_s
# \cdot \bar{\mathbf{v}}+k_{0}^{2}\left(\varepsilon_{r}-\varepsilon_b\right)
# \mathbf{E}_b \cdot \bar{\mathbf{v}}~\mathrm{dx} \\
# +&\int_{\partial \Omega}
# (\mathbf{n} \times \nabla \times \mathbf{E}_s) \cdot \bar{\mathbf{v}}
# +\left(j n_bk_{0}+\frac{1}{2r}\right) (\mathbf{n} \times \mathbf{E}_s
# \times \mathbf{n}) \cdot \bar{\mathbf{v}}~\mathrm{d}s=0,
# \end{align}
# $$
#
# using the divergence theorem
# $\int_\Omega\nabla\cdot\mathbf{F}~\mathrm{d}x = \int_{\partial\Omega}
# \mathbf{F}\cdot\mathbf{n}~\mathrm{d}s$, we can write:
#
# $$
# \begin{align}
# & \int_{\Omega}-(\nabla \times \mathbf{E}_s) \cdot (\nabla \times
# \bar{\mathbf{v}})+\varepsilon_{r} k_{0}^{2} \mathbf{E}_s \cdot
# \bar{\mathbf{v}}+k_{0}^{2}\left(\varepsilon_{r}-\varepsilon_b\right)
# \mathbf{E}_b \cdot \bar{\mathbf{v}}~\mathrm{d}x \\
# +&\int_{\partial \Omega}
# -(\nabla\times\mathbf{E}_s \times \bar{\mathbf{v}})\cdot\mathbf{n}
# + (\mathbf{n} \times \nabla \times \mathbf{E}_s) \cdot \bar{\mathbf{v}}
# +\left(j n_bk_{0}+\frac{1}{2r}\right) (\mathbf{n} \times \mathbf{E}_s
# \times \mathbf{n}) \cdot \bar{\mathbf{v}}~\mathrm{d}s=0.
# \end{align}
# $$
#
# Cancelling $-(\nabla\times\mathbf{E}_s \times \bar{\mathbf{V}})
# \cdot\mathbf{n}$  and $\mathbf{n} \times \nabla \times \mathbf{E}_s
# \cdot \bar{\mathbf{V}}$ and rearrange $\left((\mathbf{n} \times \mathbf{E}_s)
# \times \mathbf{n}\right) \cdot \bar{\mathbf{v}}$ to $ (\mathbf{E}_s \times\mathbf{n})
# \cdot (\bar{\mathbf{v}} \times \mathbf{n})$ using the triple product rule $\mathbf{A}
# \cdot(\mathbf{B} \times \mathbf{C})=\mathbf{B} \cdot(\mathbf{C} \times
# \mathbf{A})=\mathbf{C} \cdot(\mathbf{A} \times \mathbf{B})$, we get:
#
# $$
# \begin{align}
# & \int_{\Omega}-(\nabla \times \mathbf{E}_s) \cdot (\nabla \times
# \bar{\mathbf{v}})+\varepsilon_{r} k_{0}^{2} \mathbf{E}_s \cdot
# \bar{\mathbf{v}}+k_{0}^{2}\left(\varepsilon_{r}-\varepsilon_b\right)
# \mathbf{E}_b \cdot \bar{\mathbf{v}}~\mathrm{d}x \\
# +&\int_{\partial \Omega}
# \left(j n_bk_{0}+\frac{1}{2r}\right)( \mathbf{n} \times \mathbf{E}_s \times
# \mathbf{n}) \cdot \bar{\mathbf{v}} ~\mathrm{d} s = 0.
# \end{align}
# $$
#
# We use the [UFL](https://github.com/FEniCS/ufl/) to implement the
# residual

# Weak form
F = (
    -ufl.inner(ufl.curl(Es), ufl.curl(v)) * dDom
    + eps * (k0**2) * ufl.inner(Es, v) * dDom
    + (k0**2) * (eps - eps_bkg) * ufl.inner(Eb, v) * dDom
    + (1j * k0 * n_bkg + 1 / (2 * r))
    * ufl.inner(ufl.cross(Es_3d, n_3d), ufl.cross(v_3d, n_3d))
    * dsbc
)

# We split the residual into a sesquilinear (lhs) and linear (rhs) form
# and solve the problem. We store the scattered field $\mathbf{E}_s$ as
# `Esh`:

a, L = ufl.lhs(F), ufl.rhs(F)
problem = LinearProblem(a, L, bcs=[], petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
Esh = problem.solve()

# We save the solution as an [ADIOS2
# bp](https://adios2.readthedocs.io/en/latest/ecosystem/visualization.html)
# folder. In order to do so, we need to interpolate our solution
# discretized with Nedelec elements into a suitable discontinuous
# Lagrange space.

# +
gdim = domain.geometry.dim
V_dg = fem.functionspace(domain, ("Discontinuous Lagrange", degree, (gdim,)))
Esh_dg = fem.Function(V_dg)
Esh_dg.interpolate(Esh)

if hasattr(io,"VTXWriter"):
    with io.VTXWriter(domain.comm, "Esh.bp", Esh_dg) as vtx:
        vtx.write(0.0)
else:
    print("Cannot write Esh.bp: VTXWriter (adios2) is not available")
# -

# We visualize the solution using PyVista. For more information about
# saving and visualizing vector fields discretized with Nedelec
# elements, check [this](
# https://docs.fenicsproject.org/dolfinx/main/python/demos/demo_interpolation-io.html)
# DOLFINx demo.

if have_pyvista:
    V_cells, V_types, V_x = plot.vtk_mesh(V_dg)
    V_grid = pyvista.UnstructuredGrid(V_cells, V_types, V_x)
    Esh_values = np.zeros((V_x.shape[0], 3), dtype=np.float64)
    Esh_values[:, : domain.topology.dim] = Esh_dg.x.array.reshape(
        V_x.shape[0], domain.topology.dim
    ).real

    V_grid.point_data["u"] = Esh_values

    plotter = pyvista.Plotter()
    plotter.add_text("magnitude", font_size=12, color="black")
    plotter.add_mesh(V_grid.copy(), show_edges=True)
    plotter.view_xy()
    plotter.link_views()
    if not pyvista.OFF_SCREEN:
        plotter.show()
    else:
        pyvista.start_xvfb()
        plotter.screenshot("Esh.png", window_size=[800, 800])

# Next we can calculate the total electric field
# $\mathbf{E}=\mathbf{E}_s+\mathbf{E}_b$ and save it.

# +
E = fem.Function(V)
E.x.array[:] = Eb.x.array[:] + Esh.x.array[:]
E_dg = fem.Function(V_dg)
E_dg.interpolate(E)
if hasattr(io,"VTXWriter"):
    with io.VTXWriter(domain.comm, "E.bp", E_dg) as vtx:
        vtx.write(0.0)
else:
    print("Cannot write E.bp: VTXWriter (adios2) is not available")
# -

# We validate our numerical solution by computing the absorption,
# scattering and extinction efficiencies, which are quantities that
# define how much light is absorbed and scattered by the wire. First of
# all, we calculate the analytical efficiencies with the
# `calculate_analytical_efficiencies` function defined in a separate
# file:

# Calculation of analytical efficiencies
q_abs_analyt, q_sca_analyt, q_ext_analyt = calculate_analytical_efficiencies(
    eps_au, n_bkg, wl0, radius_wire
)

# Now we can calculate the numerical efficiencies. The formula for the
# absorption, scattering and extinction are:
#
# $$
# \begin{align}
# & Q_{abs} = \operatorname{Re}\left(\int_{\Omega_{m}} \frac{1}{2}
#   \frac{\operatorname{Im}(\varepsilon_m)k_0}{Z_0n_b}
#   \mathbf{E}\cdot\hat{\mathbf{E}}dx\right) \\
# & Q_{sca} = \operatorname{Re}\left(\int_{\partial\Omega} \frac{1}{2}
#   \left(\mathbf{E}_s\times\bar{\mathbf{H}}_s\right)
#   \cdot\mathbf{n}ds\right)\\ \\
# & Q_{ext} = Q_{abs} + Q_{sca},
# \end{align}
# $$
#
# with $Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}}$ being the vacuum
# impedance, and $\mathbf{H}_s =
# -j\frac{1}{Z_0k_0n_b}\nabla\times\mathbf{E}_s$ being the scattered
# magnetic field. We can then normalize these values over the intensity
# of the electromagnetic field $I_0$ and the geometrical cross section
# of the wire, $\sigma_{gcs} = 2r_w$:
#
# $$
# \begin{align}
# & q_{abs} = \frac{Q_{abs}}{I_0\sigma_{gcs}} \\
# & q_{sca} = \frac{Q_{sca}}{I_0\sigma_{gcs}} \\
# & q_{ext} = q_{abs} + q_{sca}.
# \end{align}
# $$
#
# We can calculate these values in the following way:

# +
# Vacuum impedance
Z0 = np.sqrt(mu_0 / epsilon_0)

# Magnetic field H
Hsh_3d = -1j * curl_2d(Esh) / (Z0 * k0 * n_bkg)

Esh_3d = ufl.as_vector((Esh[0], Esh[1], 0))
E_3d = ufl.as_vector((E[0], E[1], 0))

# Intensity of the electromagnetic fields I0 = 0.5*E0**2/Z0 E0 =
# np.sqrt(ax**2 + ay**2) = 1, see background_electric_field
I0 = 0.5 / Z0

# Geometrical cross section of the wire
gcs = 2 * radius_wire

# Quantities for the calculation of efficiencies
P = 0.5 * ufl.inner(ufl.cross(Esh_3d, ufl.conj(Hsh_3d)), n_3d)
Q = 0.5 * np.imag(eps_au) * k0 * (ufl.inner(E_3d, E_3d)) / Z0 / n_bkg

# Define integration domain for the wire
dAu = dx(au_tag)

# Normalized absorption efficiency
q_abs_fenics_proc = (fem.assemble_scalar(fem.form(Q * dAu)) / gcs / I0).real
q_abs_fenics = domain.comm.allreduce(q_abs_fenics_proc, op=MPI.SUM)

# Normalized scattering efficiency
q_sca_fenics_proc = (fem.assemble_scalar(fem.form(P * dsbc)) / gcs / I0).real
q_sca_fenics = domain.comm.allreduce(q_sca_fenics_proc, op=MPI.SUM)

# Extinction efficiency
q_ext_fenics = q_abs_fenics + q_sca_fenics

# Error calculation
err_abs = np.abs(q_abs_analyt - q_abs_fenics) / q_abs_analyt
err_sca = np.abs(q_sca_analyt - q_sca_fenics) / q_sca_analyt
err_ext = np.abs(q_ext_analyt - q_ext_fenics) / q_ext_analyt

# Check if errors are smaller than 1%
assert err_abs < 0.01
assert err_sca < 0.01
assert err_ext < 0.01

if domain.comm.rank == 0:
    print()
    print(f"The analytical absorption efficiency is {q_abs_analyt}")
    print(f"The numerical absorption efficiency is {q_abs_fenics}")
    print(f"The error is {err_abs * 100}%")
    print()
    print(f"The analytical scattering efficiency is {q_sca_analyt}")
    print(f"The numerical scattering efficiency is {q_sca_fenics}")
    print(f"The error is {err_sca * 100}%")
    print()
    print(f"The analytical extinction efficiency is {q_ext_analyt}")
    print(f"The numerical extinction efficiency is {q_ext_fenics}")
    print(f"The error is {err_ext * 100}%")