File: geometry.py

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 171; xml: 55
file content (277 lines) | stat: -rw-r--r-- 8,586 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# Copyright (C) 2018-2021 Michal Habera, Garth N. Wells and Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later
"""Methods for geometric searches and operations."""

from __future__ import annotations

import typing

import numpy as np
import numpy.typing as npt

if typing.TYPE_CHECKING:
    from dolfinx.cpp.graph import AdjacencyList_int32
    from dolfinx.mesh import Mesh


from dolfinx import cpp as _cpp

__all__ = [
    "BoundingBoxTree",
    "bb_tree",
    "compute_colliding_cells",
    "squared_distance",
    "compute_closest_entity",
    "compute_collisions_trees",
    "compute_collisions_points",
    "compute_distance_gjk",
    "create_midpoint_tree",
    "PointOwnershipData",
]


class PointOwnershipData:
    """Convenience class for storing data related to the ownership of points."""

    _cpp_object: typing.Union[
        _cpp.geometry.PointOwnershipData_float32, _cpp.geometry.PointOwnershipData_float64
    ]

    def __init__(self, ownership_data):
        """Wrap a C++ PointOwnershipData."""
        self._cpp_object = ownership_data

    def src_owner(self) -> npt.NDArray[np.int32]:
        """Ranks owning each point sent into ownership determination for current process"""
        return self._cpp_object.src_owner

    def dest_owner(self) -> npt.NDArray[np.int32]:
        """Ranks that sent `dest_points` to current process"""
        return self._cpp_object.dest_owners

    def dest_points(self) -> npt.NDArray[np.floating]:
        """Points owned by current rank"""
        return self._cpp_object.dest_points

    def dest_cells(self) -> npt.NDArray[np.int32]:
        """Cell indices (local to process) where each entry of `dest_points` is located"""
        return self._cpp_object.dest_cells


class BoundingBoxTree:
    """Bounding box trees used in collision detection."""

    _cpp_object: typing.Union[
        _cpp.geometry.BoundingBoxTree_float32, _cpp.geometry.BoundingBoxTree_float64
    ]

    def __init__(self, tree):
        """Wrap a C++ BoundingBoxTree.

        Note:
            This initializer should not be used in user code. Use
                ``bb_tree``.

        """
        self._cpp_object = tree

    @property
    def num_bboxes(self) -> int:
        """Number of bounding boxes."""
        return self._cpp_object.num_bboxes

    def get_bbox(self, i) -> npt.NDArray[np.floating]:
        """Get lower and upper corners of the ith bounding box.

        Args:
            i: Index of the box.

        Returns:
            The 'lower' and 'upper' points of the bounding box.
            Shape is ``(2, 3)``,

        """
        return self._cpp_object.get_bbox(i)

    def create_global_tree(self, comm) -> BoundingBoxTree:
        return BoundingBoxTree(self._cpp_object.create_global_tree(comm))


def bb_tree(
    mesh: Mesh,
    dim: int,
    entities: typing.Optional[npt.NDArray[np.int32]] = None,
    padding: float = 0.0,
) -> BoundingBoxTree:
    """Create a bounding box tree for use in collision detection.

    Args:
        mesh: The mesh.
        dim: Dimension of the mesh entities to build bounding box for.
        entities: List of entity indices (local to process). If not
            supplied, all owned and ghosted entities are used.
        padding: Padding for each bounding box.

    Returns:
        Bounding box tree.

    """
    map = mesh.topology.index_map(dim)
    if map is None:
        raise RuntimeError(f"Mesh entities of dimension {dim} have not been created.")
    if entities is None:
        entities = np.arange(map.size_local + map.num_ghosts, dtype=np.int32)

    dtype = mesh.geometry.x.dtype
    if np.issubdtype(dtype, np.float32):
        return BoundingBoxTree(
            _cpp.geometry.BoundingBoxTree_float32(mesh._cpp_object, dim, entities, padding)
        )
    elif np.issubdtype(dtype, np.float64):
        return BoundingBoxTree(
            _cpp.geometry.BoundingBoxTree_float64(mesh._cpp_object, dim, entities, padding)
        )
    else:
        raise NotImplementedError(f"Type {dtype} not supported.")


def compute_collisions_trees(
    tree0: BoundingBoxTree, tree1: BoundingBoxTree
) -> npt.NDArray[np.int32]:
    """Compute all collisions between two bounding box trees.

    Args:
        tree0: First bounding box tree.
        tree1: Second bounding box tree.

    Returns:
        List of pairs of intersecting box indices from each tree. Shape
        is ``(num_collisions, 2)``.

    """
    return _cpp.geometry.compute_collisions_trees(tree0._cpp_object, tree1._cpp_object)


def compute_collisions_points(
    tree: BoundingBoxTree, x: npt.NDArray[np.floating]
) -> _cpp.graph.AdjacencyList_int32:
    """Compute collisions between points and leaf bounding boxes.

    Bounding boxes can overlap, therefore points can collide with more
    than one box.

    Args:
        tree: Bounding box tree.
        x: Points (``shape=(num_points, 3)``).

    Returns:
       For each point, the bounding box leaves that collide with the
       point.

    """
    return _cpp.geometry.compute_collisions_points(tree._cpp_object, x)


def compute_closest_entity(
    tree: BoundingBoxTree,
    midpoint_tree: BoundingBoxTree,
    mesh: Mesh,
    points: npt.NDArray[np.floating],
) -> npt.NDArray[np.int32]:
    """Compute closest mesh entity to a point.

    Args:
        tree: bounding box tree for the entities.
        midpoint_tree: A bounding box tree with the midpoints of all
            the mesh entities. This is used to accelerate the search.
        mesh: The mesh.
        points: The points to check for collision, ``shape=(num_points,3)``.

    Returns:
        Mesh entity index for each point in ``points``. Returns -1 for a
        point if the bounding box tree is empty.

    """
    return _cpp.geometry.compute_closest_entity(
        tree._cpp_object, midpoint_tree._cpp_object, mesh._cpp_object, points
    )


def create_midpoint_tree(mesh: Mesh, dim: int, entities: npt.NDArray[np.int32]) -> BoundingBoxTree:
    """Create a bounding box tree for the midpoints of a subset of entities.

    Args:
        mesh: The mesh.
        dim: Topological dimension of the entities.
        entities: Indices of mesh entities to include.

    Returns:
        Bounding box tree for midpoints of cell entities.

    """
    return BoundingBoxTree(_cpp.geometry.create_midpoint_tree(mesh._cpp_object, dim, entities))


def compute_colliding_cells(
    mesh: Mesh, candidates: AdjacencyList_int32, x: npt.NDArray[np.floating]
):
    """From a mesh, find which cells collide with a set of points.

    Args:
        mesh: The mesh.
        candidate_cells: Adjacency list of candidate colliding cells for
            the ith point in ``x``.
        points: The points to check for collision ``shape=(num_points, 3)``,

    Returns:
        Adjacency list where the ith node is the list of entities that
        collide with the ith point.

    """
    return _cpp.geometry.compute_colliding_cells(mesh._cpp_object, candidates, x)


def squared_distance(mesh: Mesh, dim: int, entities: list[int], points: npt.NDArray[np.floating]):
    """Compute the squared distance between a point and a mesh entity.

    The distance is computed between the ith input points and the ith
    input entity.

    Args:
        mesh: Mesh containing the entities.
        dim: Topological dimension of the mesh entities.
        entities: Indices of the mesh entities (local to process).
        points: Points to compute the shortest distance from
            (``shape=(num_points, 3)``).

    Returns:
        Squared shortest distance from ``points[i]`` to ``entities[i]``.

    """
    return _cpp.geometry.squared_distance(mesh._cpp_object, dim, entities, points)


def compute_distance_gjk(
    p: npt.NDArray[np.floating], q: npt.NDArray[np.floating]
) -> npt.NDArray[np.floating]:
    """Compute the distance between two convex bodies p and q, each defined by a set of points.

    Uses the Gilbert-Johnson-Keerthi (GJK) distance algorithm.

    Args:
        p: Body 1 list of points (``shape=(num_points, gdim)``).
        q: Body 2 list of points (``shape=(num_points, gdim)``).

    Returns:
        Shortest vector between the two bodies.

    """
    assert p.dtype == q.dtype
    if np.issubdtype(p.dtype, np.float32):
        return _cpp.geometry.compute_distance_gjk_float32(p, q)
    elif np.issubdtype(p.dtype, np.float64):
        return _cpp.geometry.compute_distance_gjk_float64(p, q)
    raise RuntimeError("Invalid dtype in compute_distance_gjk")