1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
# Copyright (C) 2018-2021 Michal Habera, Garth N. Wells and Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Methods for geometric searches and operations."""
from __future__ import annotations
import typing
import numpy as np
import numpy.typing as npt
if typing.TYPE_CHECKING:
from dolfinx.cpp.graph import AdjacencyList_int32
from dolfinx.mesh import Mesh
from dolfinx import cpp as _cpp
__all__ = [
"BoundingBoxTree",
"bb_tree",
"compute_colliding_cells",
"squared_distance",
"compute_closest_entity",
"compute_collisions_trees",
"compute_collisions_points",
"compute_distance_gjk",
"create_midpoint_tree",
"PointOwnershipData",
]
class PointOwnershipData:
"""Convenience class for storing data related to the ownership of points."""
_cpp_object: typing.Union[
_cpp.geometry.PointOwnershipData_float32, _cpp.geometry.PointOwnershipData_float64
]
def __init__(self, ownership_data):
"""Wrap a C++ PointOwnershipData."""
self._cpp_object = ownership_data
def src_owner(self) -> npt.NDArray[np.int32]:
"""Ranks owning each point sent into ownership determination for current process"""
return self._cpp_object.src_owner
def dest_owner(self) -> npt.NDArray[np.int32]:
"""Ranks that sent `dest_points` to current process"""
return self._cpp_object.dest_owners
def dest_points(self) -> npt.NDArray[np.floating]:
"""Points owned by current rank"""
return self._cpp_object.dest_points
def dest_cells(self) -> npt.NDArray[np.int32]:
"""Cell indices (local to process) where each entry of `dest_points` is located"""
return self._cpp_object.dest_cells
class BoundingBoxTree:
"""Bounding box trees used in collision detection."""
_cpp_object: typing.Union[
_cpp.geometry.BoundingBoxTree_float32, _cpp.geometry.BoundingBoxTree_float64
]
def __init__(self, tree):
"""Wrap a C++ BoundingBoxTree.
Note:
This initializer should not be used in user code. Use
``bb_tree``.
"""
self._cpp_object = tree
@property
def num_bboxes(self) -> int:
"""Number of bounding boxes."""
return self._cpp_object.num_bboxes
def get_bbox(self, i) -> npt.NDArray[np.floating]:
"""Get lower and upper corners of the ith bounding box.
Args:
i: Index of the box.
Returns:
The 'lower' and 'upper' points of the bounding box.
Shape is ``(2, 3)``,
"""
return self._cpp_object.get_bbox(i)
def create_global_tree(self, comm) -> BoundingBoxTree:
return BoundingBoxTree(self._cpp_object.create_global_tree(comm))
def bb_tree(
mesh: Mesh,
dim: int,
entities: typing.Optional[npt.NDArray[np.int32]] = None,
padding: float = 0.0,
) -> BoundingBoxTree:
"""Create a bounding box tree for use in collision detection.
Args:
mesh: The mesh.
dim: Dimension of the mesh entities to build bounding box for.
entities: List of entity indices (local to process). If not
supplied, all owned and ghosted entities are used.
padding: Padding for each bounding box.
Returns:
Bounding box tree.
"""
map = mesh.topology.index_map(dim)
if map is None:
raise RuntimeError(f"Mesh entities of dimension {dim} have not been created.")
if entities is None:
entities = np.arange(map.size_local + map.num_ghosts, dtype=np.int32)
dtype = mesh.geometry.x.dtype
if np.issubdtype(dtype, np.float32):
return BoundingBoxTree(
_cpp.geometry.BoundingBoxTree_float32(mesh._cpp_object, dim, entities, padding)
)
elif np.issubdtype(dtype, np.float64):
return BoundingBoxTree(
_cpp.geometry.BoundingBoxTree_float64(mesh._cpp_object, dim, entities, padding)
)
else:
raise NotImplementedError(f"Type {dtype} not supported.")
def compute_collisions_trees(
tree0: BoundingBoxTree, tree1: BoundingBoxTree
) -> npt.NDArray[np.int32]:
"""Compute all collisions between two bounding box trees.
Args:
tree0: First bounding box tree.
tree1: Second bounding box tree.
Returns:
List of pairs of intersecting box indices from each tree. Shape
is ``(num_collisions, 2)``.
"""
return _cpp.geometry.compute_collisions_trees(tree0._cpp_object, tree1._cpp_object)
def compute_collisions_points(
tree: BoundingBoxTree, x: npt.NDArray[np.floating]
) -> _cpp.graph.AdjacencyList_int32:
"""Compute collisions between points and leaf bounding boxes.
Bounding boxes can overlap, therefore points can collide with more
than one box.
Args:
tree: Bounding box tree.
x: Points (``shape=(num_points, 3)``).
Returns:
For each point, the bounding box leaves that collide with the
point.
"""
return _cpp.geometry.compute_collisions_points(tree._cpp_object, x)
def compute_closest_entity(
tree: BoundingBoxTree,
midpoint_tree: BoundingBoxTree,
mesh: Mesh,
points: npt.NDArray[np.floating],
) -> npt.NDArray[np.int32]:
"""Compute closest mesh entity to a point.
Args:
tree: bounding box tree for the entities.
midpoint_tree: A bounding box tree with the midpoints of all
the mesh entities. This is used to accelerate the search.
mesh: The mesh.
points: The points to check for collision, ``shape=(num_points,3)``.
Returns:
Mesh entity index for each point in ``points``. Returns -1 for a
point if the bounding box tree is empty.
"""
return _cpp.geometry.compute_closest_entity(
tree._cpp_object, midpoint_tree._cpp_object, mesh._cpp_object, points
)
def create_midpoint_tree(mesh: Mesh, dim: int, entities: npt.NDArray[np.int32]) -> BoundingBoxTree:
"""Create a bounding box tree for the midpoints of a subset of entities.
Args:
mesh: The mesh.
dim: Topological dimension of the entities.
entities: Indices of mesh entities to include.
Returns:
Bounding box tree for midpoints of cell entities.
"""
return BoundingBoxTree(_cpp.geometry.create_midpoint_tree(mesh._cpp_object, dim, entities))
def compute_colliding_cells(
mesh: Mesh, candidates: AdjacencyList_int32, x: npt.NDArray[np.floating]
):
"""From a mesh, find which cells collide with a set of points.
Args:
mesh: The mesh.
candidate_cells: Adjacency list of candidate colliding cells for
the ith point in ``x``.
points: The points to check for collision ``shape=(num_points, 3)``,
Returns:
Adjacency list where the ith node is the list of entities that
collide with the ith point.
"""
return _cpp.geometry.compute_colliding_cells(mesh._cpp_object, candidates, x)
def squared_distance(mesh: Mesh, dim: int, entities: list[int], points: npt.NDArray[np.floating]):
"""Compute the squared distance between a point and a mesh entity.
The distance is computed between the ith input points and the ith
input entity.
Args:
mesh: Mesh containing the entities.
dim: Topological dimension of the mesh entities.
entities: Indices of the mesh entities (local to process).
points: Points to compute the shortest distance from
(``shape=(num_points, 3)``).
Returns:
Squared shortest distance from ``points[i]`` to ``entities[i]``.
"""
return _cpp.geometry.squared_distance(mesh._cpp_object, dim, entities, points)
def compute_distance_gjk(
p: npt.NDArray[np.floating], q: npt.NDArray[np.floating]
) -> npt.NDArray[np.floating]:
"""Compute the distance between two convex bodies p and q, each defined by a set of points.
Uses the Gilbert-Johnson-Keerthi (GJK) distance algorithm.
Args:
p: Body 1 list of points (``shape=(num_points, gdim)``).
q: Body 2 list of points (``shape=(num_points, gdim)``).
Returns:
Shortest vector between the two bodies.
"""
assert p.dtype == q.dtype
if np.issubdtype(p.dtype, np.float32):
return _cpp.geometry.compute_distance_gjk_float32(p, q)
elif np.issubdtype(p.dtype, np.float64):
return _cpp.geometry.compute_distance_gjk_float64(p, q)
raise RuntimeError("Invalid dtype in compute_distance_gjk")
|