1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
|
# Copyright (C) 2017-2024 Chris N. Richardson, Garth N. Wells and Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Creation, refining and marking of meshes."""
from __future__ import annotations
import typing
from mpi4py import MPI as _MPI
import numpy as np
import numpy.typing as npt
import basix
import basix.ufl
import ufl
from dolfinx import cpp as _cpp
from dolfinx import default_real_type
from dolfinx.common import IndexMap as _IndexMap
from dolfinx.cpp.mesh import (
CellType,
DiagonalType,
GhostMode,
build_dual_graph,
cell_dim,
create_cell_partitioner,
to_string,
to_type,
)
from dolfinx.cpp.refinement import RefinementOption
from dolfinx.fem import CoordinateElement as _CoordinateElement
from dolfinx.fem import coordinate_element as _coordinate_element
__all__ = [
"meshtags_from_entities",
"locate_entities",
"locate_entities_boundary",
"refine",
"create_mesh",
"create_submesh",
"Mesh",
"MeshTags",
"meshtags",
"CellType",
"GhostMode",
"build_dual_graph",
"cell_dim",
"compute_midpoints",
"exterior_facet_indices",
"compute_incident_entities",
"create_cell_partitioner",
"create_interval",
"create_unit_interval",
"create_rectangle",
"create_unit_square",
"create_box",
"create_unit_cube",
"to_type",
"to_string",
"transfer_meshtag",
"entities_to_geometry",
"create_geometry",
"Geometry",
"Topology",
]
class Topology:
"""Topology for a :class:`dolfinx.mesh.Mesh`"""
_cpp_object: _cpp.mesh.Topology
def __init__(self, topology: _cpp.mesh.Topology):
"""Initialize a topology from a C++ topology.
Args:
topology: The C++ topology object
Note:
Topology objects should usually be constructed with the
:func:`dolfinx.cpp.mesh.create_topology` and not this class initializer.
"""
self._cpp_object = topology
def cell_name(self) -> str:
"""String representation of the cell-type of the topology"""
return to_string(self._cpp_object.cell_type)
def connectivity(self, d0: int, d1: int) -> _cpp.graph.AdjacencyList_int32:
"""Return connectivity from entities of dimension ``d0`` to entities of dimension ``d1``.
Args:
d0: Dimension of entity one is mapping from
d1: Dimension of entity one is mapping to
"""
if (conn := self._cpp_object.connectivity(d0, d1)) is not None:
return conn
else:
raise RuntimeError(
f"Connectivity between dimension {d0} and {d1} has not been computed.",
f"Please call `dolfinx.mesh.Topology.create_connectivity({d0}, {d1})` first.",
)
@property
def comm(self):
return self._cpp_object.comm
def create_connectivity(self, d0: int, d1: int):
"""Create connectivity between given pair of dimensions, ``d0`` and ``d1``.
Args:
d0: Dimension of entities one is mapping from
d1: Dimension of entities one is mapping to
"""
self._cpp_object.create_connectivity(d0, d1)
def create_entities(self, dim: int) -> int:
"""Create entities of given topological dimension.
Args:
dim: Topological dimension
Returns:
Number of newly created entities, returns -1 if entities already existed
"""
return self._cpp_object.create_entities(dim)
def create_entity_permutations(self):
"""Compute entity permutations and reflections."""
self._cpp_object.create_entity_permutations()
@property
def dim(self) -> int:
"""Return the topological dimension of the mesh."""
return self._cpp_object.dim
@property
def entity_types(self) -> list[list[CellType]]:
"""Entity types in the topology for all topological dimensions."""
return self._cpp_object.entity_types
def get_cell_permutation_info(self) -> npt.NDArray[np.uint32]:
"""Get permutation information.
The returned data is used for packing coefficients and
assembling of tensors. The bits of each integer encodes the
number of reflections and permutations for each sub-entity of
the cell to be able to map it to the reference element.
"""
return self._cpp_object.get_cell_permutation_info()
def get_facet_permutations(self) -> npt.NDArray[np.uint8]:
"""Get the permutation integer to apply to facets.
The bits of each integer describes the number of reflections and
rotations that has to be applied to a facet to map between a
facet in the mesh (relative to a cell) and the corresponding
facet on the reference element. The data has the shape
``(num_cells, num_facets_per_cell)``, flattened row-wise. The
number of cells include potential ghost cells.
Note:
The data can be unpacked with ``numpy.unpack_bits``.
"""
return self._cpp_object.get_facet_permutations()
def index_map(self, dim: int) -> _cpp.common.IndexMap:
"""Get the IndexMap that described the parallel distribution of the mesh entities.
Args:
dim: Topological dimension
Returns:
Index map for the entities of dimension ``dim``.
"""
if (imap := self._cpp_object.index_map(dim)) is not None:
return imap
else:
raise RuntimeError(
f"Entities of dimension {dim} has not been computed."
f"Call `dolfinx.mesh.Topology.create_entities({dim}) first."
)
def interprocess_facets(self) -> npt.NDArray[np.int32]:
"""List of inter-process facets, if facet topology has been computed."""
return self._cpp_object.interprocess_facets()
@property
def original_cell_index(self) -> npt.NDArray[np.int64]:
"""Get the original cell index"""
return self._cpp_object.original_cell_index
def set_connectivity(self, graph: _cpp.graph.AdjacencyList_int32, d0: int, d1: int):
"""Set connectivity for given pair of topological dimensions.
Args:
graph: Connectivity graph
d0: Topological dimension mapping from
d1: Topological dimension mapping to
"""
self._cpp_object.set_connectivity(graph, d0, d1)
def set_index_map(self, dim: int, index_map: _cpp.common.IndexMap):
"""Set the IndexMap for dimension ``dim``.
Args:
dim: Topological dimension of entity.
index_map: Index map to store.
"""
return self._cpp_object.set_index_map(dim, index_map)
@property
def cell_type(self) -> CellType:
"""Get the cell type of the topology"""
return self._cpp_object.cell_type
class Geometry:
"""The geometry of a :class:`dolfinx.mesh.Mesh`"""
_cpp_object: typing.Union[_cpp.mesh.Geometry_float32, _cpp.mesh.Geometry_float64]
def __init__(
self, geometry: typing.Union[_cpp.mesh.Geometry_float32, _cpp.mesh.Geometry_float64]
):
"""Initialize a geometry from a C++ geometry.
Args:
geometry: The C++ geometry object.
Note:
Geometry objects should usually be constructed with the
:func:`create_geometry` and not using this class
initializer. This class is combined with different base
classes that depend on the scalar type used in the Geometry.
"""
self._cpp_object = geometry
@property
def cmap(self) -> _CoordinateElement:
"""Element that describes the geometry map."""
return _CoordinateElement(self._cpp_object.cmap)
@property
def dim(self):
"""Dimension of the Euclidean coordinate system."""
return self._cpp_object.dim
@property
def dofmap(self) -> npt.NDArray[np.int32]:
"""Dofmap for the geometry, shape ``(num_cells, dofs_per_cell)``."""
return self._cpp_object.dofmap
def index_map(self) -> _IndexMap:
"""Index map describing the layout of the geometry points (nodes)."""
return self._cpp_object.index_map()
@property
def input_global_indices(self) -> npt.NDArray[np.int64]:
"""Global input indices of the geometry nodes."""
return self._cpp_object.input_global_indices
@property
def x(self) -> typing.Union[npt.NDArray[np.float32], npt.NDArray[np.float64]]:
"""Geometry coordinate points, ``shape=(num_points, 3)``."""
return self._cpp_object.x
class Mesh:
"""A mesh."""
_mesh: typing.Union[_cpp.mesh.Mesh_float32, _cpp.mesh.Mesh_float64]
_topology: Topology
_geometry: Geometry
_ufl_domain: typing.Optional[ufl.Mesh]
def __init__(self, msh, domain: typing.Optional[ufl.Mesh]):
"""Initialize mesh from a C++ mesh.
Args:
msh: A C++ mesh object.
domain: A UFL domain.
Note:
Mesh objects should usually be constructed using
:func:`create_mesh` and not using this class initializer.
This class is combined with different base classes that
depend on the scalar type used in the Mesh.
"""
self._cpp_object = msh
self._topology = Topology(self._cpp_object.topology)
self._geometry = Geometry(self._cpp_object.geometry)
self._ufl_domain = domain
if self._ufl_domain is not None:
self._ufl_domain._ufl_cargo = self._cpp_object # type: ignore
@property
def comm(self):
return self._cpp_object.comm
@property
def name(self):
return self._cpp_object.name
@name.setter
def name(self, value):
self._cpp_object.name = value
def ufl_cell(self) -> ufl.Cell:
"""Return the UFL cell type.
Note:
This method is required for UFL compatibility.
"""
return ufl.Cell(self.topology.cell_name())
def ufl_domain(self) -> ufl.Mesh:
"""Return the ufl domain corresponding to the mesh.
Returns:
The UFL domain. Is ``None`` if the domain has not been set.
Note:
This method is required for UFL compatibility.
"""
return self._ufl_domain
def basix_cell(self) -> ufl.Cell:
"""Return the Basix cell type."""
return getattr(basix.CellType, self.topology.cell_name())
def h(self, dim: int, entities: npt.NDArray[np.int32]) -> npt.NDArray[np.float64]:
"""Geometric size measure of cell entities.
Args:
dim: Topological dimension of the entities to compute the
size measure of.
entities: Indices of entities of dimension ``dim`` to
compute size measure of.
Returns:
Size measure for each requested entity.
"""
return _cpp.mesh.h(self._cpp_object, dim, entities)
@property
def topology(self) -> Topology:
"Mesh topology."
return self._topology
@property
def geometry(self) -> Geometry:
"Mesh geometry."
return self._geometry
class MeshTags:
"""Mesh tags associate data (markers) with a subset of mesh entities of a given dimension."""
def __init__(self, meshtags):
"""Initialize tags from a C++ MeshTags object.
Args:
meshtags: C++ mesh tags object.
Note:
MeshTags objects should not usually be created using this
initializer directly.
A Python mesh is passed to the initializer as it may have
UFL data attached that is not attached the C + + Mesh that is
associated with the C + + ``meshtags`` object. If `mesh` is
passed, ``mesh`` and ``meshtags`` must share the same C + +
mesh.
"""
self._cpp_object = meshtags
def ufl_id(self) -> int:
"""Identiftying integer used by UFL."""
return id(self)
@property
def topology(self) -> _cpp.mesh.Topology:
"""Mesh topology with which the the tags are associated."""
return self._cpp_object.topology
@property
def dim(self) -> int:
"""Topological dimension of the tagged entities."""
return self._cpp_object.dim
@property
def indices(self) -> npt.NDArray[np.int32]:
"""Indices of tagged mesh entities."""
return self._cpp_object.indices
@property
def values(self):
"""Values associated with tagged mesh entities."""
return self._cpp_object.values
@property
def name(self) -> str:
"Name of the mesh tags object."
return self._cpp_object.name
@name.setter
def name(self, value):
self._cpp_object.name = value
def find(self, value) -> npt.NDArray[np.int32]:
"""Get a list of all entity indices with a given value.
Args:
value: Tag value to search for.
Returns:
Indices of entities with tag ``value``.
"""
return self._cpp_object.find(value)
def compute_incident_entities(
topology: Topology, entities: npt.NDArray[np.int32], d0: int, d1: int
) -> npt.NDArray[np.int32]:
"""Compute all entities of ``d1`` connected to ``entities`` of dimension ``d0``.
Args:
topology: The topology.
entities: List of entities fo dimension ``d0``.
d0: Topological dimension.
d1: Topological dimension to map to.
Returns:
Incident entity indices.
"""
return _cpp.mesh.compute_incident_entities(topology._cpp_object, entities, d0, d1)
def compute_midpoints(msh: Mesh, dim: int, entities: npt.NDArray[np.int32]):
"""Compute the midpoints of a set of mesh entities.
Args:
msh: The mesh.
dim: Topological dimension of the mesh entities to consider.
entities: Indices of entities in ``mesh`` to consider.
Returns:
Midpoints of the entities, shape ``(num_entities, 3)``.
"""
return _cpp.mesh.compute_midpoints(msh._cpp_object, dim, entities)
def locate_entities(msh: Mesh, dim: int, marker: typing.Callable) -> np.ndarray:
"""Compute mesh entities satisfying a geometric marking function.
Args:
msh: Mesh to locate entities on.
dim: Topological dimension of the mesh entities to consider.
marker: A function that takes an array of points ``x`` with
shape ``(gdim, num_points)`` and returns an array of
booleans of length ``num_points``, evaluating to `True` for
entities to be located.
Returns:
Indices (local to the process) of marked mesh entities.
"""
return _cpp.mesh.locate_entities(msh._cpp_object, dim, marker)
def locate_entities_boundary(msh: Mesh, dim: int, marker: typing.Callable) -> np.ndarray:
"""Compute mesh entities that are connected to an owned boundary
facet and satisfy a geometric marking function.
For vertices and edges, in parallel this function will not
necessarily mark all entities that are on the exterior boundary. For
example, it is possible for a process to have a vertex that lies on
the boundary without any of the attached facets being a boundary
facet. When used to find degrees-of-freedom, e.g. using
:func:`dolfinx.fem.locate_dofs_topological`, the function that uses
the data returned by this function must typically perform some
parallel communication.
Args:
msh: Mesh to locate boundary entities on.
dim: Topological dimension of the mesh entities to consider
marker: Function that takes an array of points ``x`` with shape
``(gdim, num_points)`` and returns an array of booleans of
length ``num_points``, evaluating to ``True`` for entities
to be located.
Returns:
Indices (local to the process) of marked mesh entities.
"""
return _cpp.mesh.locate_entities_boundary(msh._cpp_object, dim, marker)
def transfer_meshtag(
meshtag: MeshTags,
msh1: Mesh,
parent_cell: npt.NDArray[np.int32],
parent_facet: typing.Optional[npt.NDArray[np.int8]] = None,
) -> MeshTags:
"""Generate cell mesh tags on a refined mesh from the mesh tags on the coarse parent mesh.
Args:
meshtag: Mesh tags on the coarse, parent mesh.
msh1: The refined mesh.
parent_cell: Index of the parent cell for each cell in the
refined mesh.
parent_facet: Index of the local parent facet for each cell
in the refined mesh. Only required for transfer tags on
facets.
Returns:
Mesh tags on the refined mesh.
"""
if meshtag.dim == meshtag.topology.dim:
mt = _cpp.refinement.transfer_cell_meshtag(
meshtag._cpp_object, msh1.topology._cpp_object, parent_cell
)
return MeshTags(mt)
elif meshtag.dim == meshtag.topology.dim - 1:
assert parent_facet is not None
mt = _cpp.refinement.transfer_facet_meshtag(
meshtag._cpp_object, msh1.topology._cpp_object, parent_cell, parent_facet
)
return MeshTags(mt)
else:
raise RuntimeError("MeshTag transfer is supported on on cells or facets.")
def refine(
msh: Mesh,
edges: typing.Optional[np.ndarray] = None,
partitioner: typing.Optional[typing.Callable] = create_cell_partitioner(GhostMode.none),
option: RefinementOption = RefinementOption.none,
) -> tuple[Mesh, npt.NDArray[np.int32], npt.NDArray[np.int8]]:
"""Refine a mesh.
Passing ``None`` for ``partitioner``, refined cells will be on the
same process as the parent cell.
Note:
Using the default partitioner for the refined mesh, the refined
mesh will **not** include ghosts cells (cells connected by facet
to an owned cells) even if the parent mesh is ghosted.
Warning:
Passing ``None`` for ``partitioner``, the refined mesh will
**not** have ghosts cells even if the parent mesh has ghost
cells. The possibility to not re-partition the refined mesh and
include ghost cells in the refined mesh will be added in a
future release.
Args:
msh: Mesh from which to create the refined mesh.
edges: Indices of edges to split during refinement. If ``None``,
mesh refinement is uniform.
partitioner: Partitioner to distribute the refined mesh. If
``None`` no redistribution is performed, i.e. refined cells
remain on the same process as the parent cell.
option: Controls whether parent cells and/or parent facets are
computed.
Returns:
Refined mesh, (optional) parent cells, (optional) parent facets
"""
mesh1, parent_cell, parent_facet = _cpp.refinement.refine(
msh._cpp_object, edges, partitioner, option
)
# Create new ufl domain as it will carry a reference to the C++ mesh
# in the ufl_cargo
ufl_domain = ufl.Mesh(msh._ufl_domain.ufl_coordinate_element()) # type: ignore
return Mesh(mesh1, ufl_domain), parent_cell, parent_facet
def create_mesh(
comm: _MPI.Comm,
cells: npt.NDArray[np.int64],
x: npt.NDArray[np.floating],
e: typing.Union[
ufl.Mesh,
basix.finite_element.FiniteElement,
basix.ufl._BasixElement,
_CoordinateElement,
],
partitioner: typing.Optional[typing.Callable] = None,
) -> Mesh:
"""Create a mesh from topology and geometry arrays.
Args:
comm: MPI communicator to define the mesh on.
cells: Cells of the mesh. ``cells[i]`` are the 'nodes' of cell ``i``.
x: Mesh geometry ('node' coordinates), with shape ``(num_nodes, gdim)``.
e: UFL mesh. The mesh scalar type is determined by the scalar
type of ``e``.
partitioner: Function that determines the parallel distribution
of cells across MPI ranks.
Note:
If required, the coordinates ``x`` will be cast to the same
scalar type as the domain/element ``e``.
Returns:
A mesh.
"""
if partitioner is None and comm.size > 1:
partitioner = create_cell_partitioner(GhostMode.none)
x = np.asarray(x, order="C")
if x.ndim == 1:
gdim = 1
else:
gdim = x.shape[1]
dtype = None
try:
# e is a UFL domain
e_ufl = e.ufl_coordinate_element() # type: ignore
cmap = _coordinate_element(e_ufl.basix_element) # type: ignore
domain = e
dtype = cmap.dtype
# TODO: Resolve UFL vs Basix geometric dimension issue
# assert domain.geometric_dimension() == gdim
except AttributeError:
try:
# e is a Basix 'UFL' element
cmap = _coordinate_element(e.basix_element) # type: ignore
domain = ufl.Mesh(e)
dtype = cmap.dtype
assert domain.geometric_dimension() == gdim
except AttributeError:
try:
# e is a Basix element
# TODO: Resolve geometric dimension vs shape for manifolds
cmap = _coordinate_element(e) # type: ignore
e_ufl = basix.ufl._BasixElement(e) # type: ignore
e_ufl = basix.ufl.blocked_element(e_ufl, shape=(gdim,))
domain = ufl.Mesh(e_ufl)
dtype = cmap.dtype
assert domain.geometric_dimension() == gdim
except (AttributeError, TypeError):
# e is a CoordinateElement
cmap = e
domain = None
dtype = cmap.dtype
x = np.asarray(x, dtype=dtype, order="C")
cells = np.asarray(cells, dtype=np.int64, order="C")
msh = _cpp.mesh.create_mesh(comm, cells, cmap._cpp_object, x, partitioner)
return Mesh(msh, domain)
def create_submesh(
msh: Mesh, dim: int, entities: npt.NDArray[np.int32]
) -> tuple[Mesh, npt.NDArray[np.int32], npt.NDArray[np.int32], npt.NDArray[np.int32]]:
"""Create a mesh with specified entities from another mesh.
Args:
msh: Mesh to create the sub-mesh from.
dim: Topological dimension of the entities in ``msh`` to include
in the sub-mesh.
entities: Indices of entities in ``msh`` to include in the
sub-mesh.
Returns:
The (1) sub mesh, (2) entity map, (3) vertex map, and (4) node
map (geometry). Each of the maps a local index of the sub mesh
to a local index of ``msh``.
"""
submsh, entity_map, vertex_map, geom_map = _cpp.mesh.create_submesh(
msh._cpp_object, dim, entities
)
submsh_domain = ufl.Mesh(
basix.ufl.element(
"Lagrange",
to_string(submsh.topology.cell_type),
submsh.geometry.cmap.degree,
basix.LagrangeVariant(submsh.geometry.cmap.variant),
shape=(submsh.geometry.dim,),
dtype=submsh.geometry.x.dtype,
)
)
return (Mesh(submsh, submsh_domain), entity_map, vertex_map, geom_map)
def meshtags(
msh: Mesh,
dim: int,
entities: npt.NDArray[np.int32],
values: typing.Union[np.ndarray, int, float],
) -> MeshTags:
"""Create a MeshTags object that associates data with a subset of mesh entities.
Args:
msh: The mesh.
dim: Topological dimension of the mesh entity.
entities: Indices(local to process) of entities to associate
values with . The array must be sorted and must not contain
duplicates.
values: The corresponding value for each entity.
Returns:
A mesh tags object.
Note:
The type of the returned MeshTags is inferred from the type of
``values``.
"""
if isinstance(values, int):
assert values >= np.iinfo(np.int32).min and values <= np.iinfo(np.int32).max
values = np.full(entities.shape, values, dtype=np.int32)
elif isinstance(values, float):
values = np.full(entities.shape, values, dtype=np.double)
values = np.asarray(values)
if values.dtype == np.int8:
ftype = _cpp.mesh.MeshTags_int8
elif values.dtype == np.int32:
ftype = _cpp.mesh.MeshTags_int32
elif values.dtype == np.int64:
ftype = _cpp.mesh.MeshTags_int64
elif values.dtype == np.float64:
ftype = _cpp.mesh.MeshTags_float64
else:
raise NotImplementedError(f"Type {values.dtype} not supported.")
return MeshTags(
ftype(msh.topology._cpp_object, dim, np.asarray(entities, dtype=np.int32), values)
)
def meshtags_from_entities(
msh: Mesh, dim: int, entities: _cpp.graph.AdjacencyList_int32, values: npt.NDArray[typing.Any]
):
"""Create a :class:dolfinx.mesh.MeshTags` object that associates
data with a subset of mesh entities, where the entities are defined
by their vertices.
Args:
msh: The mesh.
dim: Topological dimension of the mesh entity.
entities: Entities to associated values with, with entities
defined by their vertices.
values: The corresponding value for each entity.
Returns:
A mesh tags object.
Note:
The type of the returned MeshTags is inferred from the type of
``values``.
"""
if isinstance(values, int):
assert np.can_cast(values, np.int32)
values = np.full(entities.num_nodes, values, dtype=np.int32)
elif isinstance(values, float):
values = np.full(entities.num_nodes, values, dtype=np.double)
values = np.asarray(values)
return MeshTags(_cpp.mesh.create_meshtags(msh.topology._cpp_object, dim, entities, values))
def create_interval(
comm: _MPI.Comm,
nx: int,
points: npt.ArrayLike,
dtype: npt.DTypeLike = default_real_type,
ghost_mode=GhostMode.shared_facet,
partitioner=None,
) -> Mesh:
"""Create an interval mesh.
Args:
comm: MPI communicator.
nx: Number of cells.
points: Coordinates of the end points.
dtype: Float type for the mesh geometry(``numpy.float32``
or ``numpy.float64``).
ghost_mode: Ghost mode used in the mesh partitioning. Options
are ``GhostMode.none`` and ``GhostMode.shared_facet``.
partitioner: Partitioning function to use for determining the
parallel distribution of cells across MPI ranks.
Returns:
An interval mesh.
"""
if partitioner is None and comm.size > 1:
partitioner = _cpp.mesh.create_cell_partitioner(ghost_mode)
domain = ufl.Mesh(basix.ufl.element("Lagrange", "interval", 1, shape=(1,), dtype=dtype)) # type: ignore
if np.issubdtype(dtype, np.float32):
msh = _cpp.mesh.create_interval_float32(comm, nx, points, ghost_mode, partitioner)
elif np.issubdtype(dtype, np.float64):
msh = _cpp.mesh.create_interval_float64(comm, nx, points, ghost_mode, partitioner)
else:
raise RuntimeError(f"Unsupported mesh geometry float type: {dtype}")
return Mesh(msh, domain)
def create_unit_interval(
comm: _MPI.Comm,
nx: int,
dtype: npt.DTypeLike = default_real_type,
ghost_mode=GhostMode.shared_facet,
partitioner=None,
) -> Mesh:
"""Create a mesh on the unit interval.
Args:
comm: MPI communicator.
nx: Number of cells.
points: Coordinates of the end points.
dtype: Float type for the mesh geometry(``numpy.float32``
or ``numpy.float64``).
ghost_mode: Ghost mode used in the mesh partitioning. Options
are ``GhostMode.none`` and ``GhostMode.shared_facet``.
partitioner: Partitioning function to use for determining the
parallel distribution of cells across MPI ranks.
Returns:
A unit interval mesh with end points at 0 and 1.
"""
return create_interval(comm, nx, [0.0, 1.0], dtype, ghost_mode, partitioner)
def create_rectangle(
comm: _MPI.Comm,
points: npt.ArrayLike,
n: npt.ArrayLike,
cell_type=CellType.triangle,
dtype: npt.DTypeLike = default_real_type,
ghost_mode=GhostMode.shared_facet,
partitioner=None,
diagonal: DiagonalType = DiagonalType.right,
) -> Mesh:
"""Create a rectangle mesh.
Args:
comm: MPI communicator.
points: Coordinates of the lower - left and upper - right corners of
the rectangle.
n: Number of cells in each direction.
cell_type: Mesh cell type.
dtype: Float type for the mesh geometry(``numpy.float32``
or ``numpy.float64``)
ghost_mode: Ghost mode used in the mesh partitioning.
partitioner: Function that computes the parallel distribution of
cells across MPI ranks.
diagonal: Direction of diagonal of triangular meshes. The
options are ``left``, ``right``, ``crossed``, ``left / right``,
``right / left``.
Returns:
A mesh of a rectangle.
"""
if partitioner is None and comm.size > 1:
partitioner = _cpp.mesh.create_cell_partitioner(ghost_mode)
domain = ufl.Mesh(basix.ufl.element("Lagrange", cell_type.name, 1, shape=(2,), dtype=dtype)) # type: ignore
if np.issubdtype(dtype, np.float32):
msh = _cpp.mesh.create_rectangle_float32(comm, points, n, cell_type, partitioner, diagonal)
elif np.issubdtype(dtype, np.float64):
msh = _cpp.mesh.create_rectangle_float64(comm, points, n, cell_type, partitioner, diagonal)
else:
raise RuntimeError(f"Unsupported mesh geometry float type: {dtype}")
return Mesh(msh, domain)
def create_unit_square(
comm: _MPI.Comm,
nx: int,
ny: int,
cell_type=CellType.triangle,
dtype: npt.DTypeLike = default_real_type,
ghost_mode=GhostMode.shared_facet,
partitioner=None,
diagonal: DiagonalType = DiagonalType.right,
) -> Mesh:
"""Create a mesh of a unit square.
Args:
comm: MPI communicator.
nx: Number of cells in the "x" direction.
ny: Number of cells in the "y" direction.
cell_type: Mesh cell type.
dtype: Float type for the mesh geometry(``numpy.float32``
or ``numpy.float64``).
ghost_mode: Ghost mode used in the mesh partitioning.
partitioner: Function that computes the parallel distribution of
cells across MPI ranks.
diagonal:
Direction of diagonal.
Returns:
A mesh of a square with corners at (0, 0) and (1, 1).
"""
return create_rectangle(
comm,
[np.array([0.0, 0.0]), np.array([1.0, 1.0])],
[nx, ny],
cell_type,
dtype,
ghost_mode,
partitioner,
diagonal,
)
def create_box(
comm: _MPI.Comm,
points: list[npt.ArrayLike],
n: list,
cell_type=CellType.tetrahedron,
dtype: npt.DTypeLike = default_real_type,
ghost_mode=GhostMode.shared_facet,
partitioner=None,
) -> Mesh:
"""Create a box mesh.
Args:
comm: MPI communicator.
points: Coordinates of the 'lower-left' and 'upper-right'
corners of the box.
n: List of cells in each direction
cell_type: The cell type.
dtype: Float type for the mesh geometry(``numpy.float32``
or ``numpy.float64``).
ghost_mode: The ghost mode used in the mesh partitioning.
partitioner: Function that computes the parallel distribution of
cells across MPI ranks.
Returns:
A mesh of a box domain.
"""
if partitioner is None and comm.size > 1:
partitioner = _cpp.mesh.create_cell_partitioner(ghost_mode)
domain = ufl.Mesh(basix.ufl.element("Lagrange", cell_type.name, 1, shape=(3,), dtype=dtype)) # type: ignore
if np.issubdtype(dtype, np.float32):
msh = _cpp.mesh.create_box_float32(comm, points, n, cell_type, partitioner)
elif np.issubdtype(dtype, np.float64):
msh = _cpp.mesh.create_box_float64(comm, points, n, cell_type, partitioner)
else:
raise RuntimeError(f"Unsupported mesh geometry float type: {dtype}")
return Mesh(msh, domain)
def create_unit_cube(
comm: _MPI.Comm,
nx: int,
ny: int,
nz: int,
cell_type=CellType.tetrahedron,
dtype: npt.DTypeLike = default_real_type,
ghost_mode=GhostMode.shared_facet,
partitioner=None,
) -> Mesh:
"""Create a mesh of a unit cube.
Args:
comm: MPI communicator.
nx: Number of cells in "x" direction.
ny: Number of cells in "y" direction.
nz: Number of cells in "z" direction.
cell_type: Mesh cell type
dtype: Float type for the mesh geometry(``numpy.float32``
or ``numpy.float64``).
ghost_mode: Ghost mode used in the mesh partitioning.
partitioner: Function that computes the parallel distribution of
cells across MPI ranks.
Returns:
A mesh of an axis-aligned unit cube with corners at ``(0, 0, 0)``
and ``(1, 1, 1)``.
"""
return create_box(
comm,
[np.array([0.0, 0.0, 0.0]), np.array([1.0, 1.0, 1.0])],
[nx, ny, nz],
cell_type,
dtype,
ghost_mode,
partitioner,
)
def entities_to_geometry(
msh: Mesh, dim: int, entities: npt.NDArray[np.int32], permute=False
) -> npt.NDArray[np.int32]:
"""Compute the geometric DOFs associated with the closure of the given mesh entities.
Args:
msh: The mesh.
dim: Topological dimension of the entities of interest.
entities: Entity indices (local to the process).
permute: Permute the DOFs such that they are consistent with the
orientation of `dim`-dimensional mesh entities. This
requires `create_entity_permutations` to be called first.
Returns:
The geometric DOFs associated with the closure of the entities
in `entities`.
"""
return _cpp.mesh.entities_to_geometry(msh._cpp_object, dim, entities, permute)
def exterior_facet_indices(topology: Topology) -> npt.NDArray[np.int32]:
"""Compute the indices of all exterior facets that are owned by the caller.
An exterior facet (co-dimension 1) is one that is connected globally
to only one cell of co-dimension 0).
Note:
This is a collective operation that should be called on all
processes.
Args:
topology: The topology
Returns:
Sorted list of owned facet indices that are exterior facets of
the mesh.
"""
return _cpp.mesh.exterior_facet_indices(topology._cpp_object)
def create_geometry(
index_map: _IndexMap,
dofmap: npt.NDArray[np.int32],
element: _CoordinateElement,
x: np.ndarray,
input_global_indices: npt.NDArray[np.int64],
) -> Geometry:
"""Create a Geometry object.
Args:
index_map: Index map describing the layout of the geometry
points (nodes).
dofmap: The geometry (point) dofmap. For a cell, it gives the
row in the point coordinates ``x`` of each local geometry
node. ``shape=(num_cells, num_dofs_per_cell)``.
element: Element that describes the cell geometry map.
x: The point coordinates. The shape is ``(num_points, geometric_dimension).``
input_global_indices: The 'global' input index of each point,
commonly from a mesh input file.
"""
if x.dtype == np.float64:
ftype = _cpp.mesh.Geometry_float64
elif x.dtype == np.float32:
ftype = _cpp.mesh.Geometry_float64
else:
raise ValueError("Unknown floating type for geometry, got: {x.dtype}")
if (dtype := np.dtype(element.dtype)) != x.dtype:
raise ValueError(f"Mismatch in x dtype ({x.dtype}) and coordinate element ({dtype})")
return Geometry(ftype(index_map, dofmap, element, x, input_global_indices))
|